首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318篇
  免费   31篇
  2022年   8篇
  2021年   14篇
  2020年   8篇
  2019年   4篇
  2018年   3篇
  2017年   5篇
  2016年   7篇
  2015年   11篇
  2014年   19篇
  2013年   27篇
  2012年   22篇
  2011年   17篇
  2010年   12篇
  2009年   10篇
  2008年   11篇
  2007年   16篇
  2006年   19篇
  2005年   11篇
  2004年   10篇
  2003年   7篇
  2002年   10篇
  2001年   7篇
  2000年   4篇
  1999年   9篇
  1998年   7篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1990年   8篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1982年   2篇
  1979年   4篇
  1977年   1篇
  1976年   3篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   4篇
  1970年   3篇
  1969年   3篇
  1968年   1篇
  1966年   2篇
  1964年   2篇
排序方式: 共有349条查询结果,搜索用时 15 毫秒
251.
Trimetaphosphatase (TMPase) and cytidine-5'-monophosphatase (CMPase) were used as lysosomal markers in the transitional ameloblasts (TA) to investigate the distribution of lysosomal structures and to correlate the cytochemical findings with the ultrastructural features of these cells. Of particular interest were the cytochemical and morphological changes which occur as the ameloblasts approach the maturation stage of enamel formation. The sequence of changes observed provides a basis for designation of three regions of the transitional zone (early and late TA and modulating ameloblasts). In the early TA region, the cells decreased in height and contained phagic vacuoles as well as numerous TMPase and CMPase reactive structures. Late transitional ameloblasts had invaginations at their distal ends as well as membrane-bound structures, both filled with fine granular material. Dense bodies, phagic vacuoles, and other elements of the lysosomal system were enzyme reactive. Modulating ameloblasts lacked the phagic vacuoles but exhibited large numbers of multivesicular bodies, vesicles, and secretory granules. Their distal ends were morphologically altered indicating a change towards ruffle- or smooth-ended varieties of maturation ameloblast. In the former, increased granular material was observed within cell membrane invaginations and associated membrane-bound structures. In the latter, intercellular spaces widened and were filled with granular material. The present cytochemical findings of an extensive lyosomal system in transitional ameloblasts confirm the function of those cells in reducing the secretory ameloblast population and in the selective elimination of their protein-synthesizing organelles. Furthermore, this extensive lysosmal system and the present morphological findings are consistent with a potential role for transitional ameloblasts in contributing to the marked loss of enamel protein known to occur during maturation.  相似文献   
252.
253.
Huperzine A (HupA) is an anti-Alzheimer’s therapeutic and a dietary supplement for memory boosting that is extracted mainly from Huperziacae plants. Endophytes represent the upcoming refuge to protect the plant resource from distinction but their HupA yield is still far from commercialization. In this context, UV and gamma radiation mutagenesis of the newly isolated HupA-producing Alternaria brassicae AGF041 would be applied in this study for improving the endophytic HupA yield. Compared to non-irradiated cultures, UV (30–40 min, exposure) and γ (0·5 KGy, dose) irradiated cultures, each separately, showed a significant higher HupA yield (17·2 and 30·3%, respectively). While, application of a statistically optimized compound irradiation (0·70 KGy of γ treatment and 42·49 min of UV exposure, sequentially) via Response Surface Methodology (RSM) resulted in 53·1% production increase. Moreover, a stable selected mutant strain CM003 underwent batch cultivation using a 6·6 l bioreactor for the first time and was successful for scaling up the HupA production to 261·6 µg l−1. Findings of this research are demonstrated to be valuable as the employed batch fermentation represents a successful starting step towards the promising endophytic HupA production at an industrial scale.  相似文献   
254.
We have prepared the oxo-bridged dimer [Ru(bpb)(NO]2(μ-O) in 60% isolated yield from the reaction of the known Ru(bpb)(NO)Cl with silver nitrite. The compound exhibits a υNO of 1758 cm−1 (KBr pellet). The crystal structure reveals a linear ON-Ru-O-Ru-NO fragment with the oxo atom serving as an inversion center in the molecule. The redox behavior in DMF is characterized by a reversible reduction followed by a second but irreversible reduction in this solvent.  相似文献   
255.
256.
257.
258.
259.
Retroviralenvelope (env)-like sequences in 2 cultivated allotetraploid cottons and their diploid progenitors have been identified and characterized in this study. DNA sequence analysis reveals that these sequences are heterogeneous. The observed sequence diversity, however, seems to preserve coding information. This is evidenced by the detection of the transmembrane domain (TM), which is the most conserved feature of the divergent retroviral env genes. The high ratio of synonymous to nonsynonymous changes suggests that these sequences are evolving under purifying selection. Phylogenetic analysis shows thatGossypium sequences closely cluster with a lineage of plant endogenous retroviruses that have anenv-like gene. These results provide evidence for the antiquity and the wide diversity ofenv-like sequences in theGossypium genome.  相似文献   
260.
We characterized the cellular immune response to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in 12- to 14-month-old BALB/c mice, a model that mimics features of the human disease. Following intranasal administration, the virus replicated in the lungs, with peak titers on day 2 postinfection. Enhanced production of cytokines (tumor necrosis factor alpha [TNF-α] and interleukin-6 [IL-6]) and chemokines (CXCL10, CCL2, CCL3, and CCL5) correlated with migration of NK cells, macrophages, and plasmacytoid dendritic cells (pDC) into the lungs. By day 7, histopathologic evidence of pneumonitis was seen in the lungs when viral clearance occurred. At this time, a second wave of enhanced production of cytokines (TNF-α, IL-6, gamma interferon [IFN-γ], IL-2, and IL-5), chemokines (CXCL9, CXCL10, CCL2, CCL3, and CCL5), and receptors (CXCR3, CCR2, and CCR5), was detected in the lungs, associated with an influx of T lymphocytes. Depletion of CD8+ T cells at the time of infection did not affect viral replication or clearance. However, depletion of CD4+ T cells resulted in an enhanced immune-mediated interstitial pneumonitis and delayed clearance of SARS-CoV from the lungs, which was associated with reduced neutralizing antibody and cytokine production and reduced pulmonary recruitment of lymphocytes. Innate defense mechanisms are able to control SARS-CoV infection in the absence of CD4+ and CD8+ T cells and antibodies. Our findings provide new insights into the pathogenesis of SARS, demonstrating the important role of CD4+ but not CD8+ T cells in primary SARS-CoV infection in this model.The global outbreak of severe acute respiratory syndrome (SARS) in 2003 that infected more than 8,000 people in 29 countries across five continents, with 774 deaths reported by the World Health Organization (54), was caused by a highly contagious coronavirus designated SARS-CoV (33). The elderly were more likely to die from SARS-CoV infection than younger people (7), with a case-fatality rate of 50% in people older than 65 years (14, 53). Disease pathogenesis in SARS is complex, with multiple factors leading to severe pulmonary injury and dissemination of the virus to other organs. High viral load; systemic infection; a cytokine storm with high levels of CXCL10/IP-10, CCL3/MIP-1α, and CCL2/MCP-1; massive lung infiltration by monocytes and macrophages; and rapid depletion of T cells are hallmarks of SARS (5, 13, 15, 21, 28, 35). The role of neutralizing antibodies (Abs) in protection from SARS-CoV infection has been well documented. Virus-specific neutralizing Abs reduce viral load, protect against weight loss, and reduce histopathology in animal models (42, 47, 48). Although the role of type I interferons (IFNs) in the natural history of SARS is controversial (5, 9, 59), the innate defense system appears to be critical for controlling SARS-CoV replication in mice (23, 41). Mice lacking normal innate signaling due to STAT1 or MyD88 deficiency are highly susceptible to SARS-CoV infection. Virus-specific T-cell responses are present in convalescent patients with SARS (27, 55). However, little is known about the role of T cells in the acute phase of SARS.Several mouse models have been developed for the in vivo study of SARS pathogenesis. However, no single model accurately reproduces all aspects of the human disease. SARS-CoV replicates in the upper and lower respiratory tracts of 4- to 8-week-old mice and is cleared rapidly; infection is associated with transient mild pneumonitis, and cytokines are not detectable in the lungs (20, 42, 49). A SARS-CoV isolate that was adapted by serial passage in mice (MA-15) replicates to a higher titer and for a longer duration in the lungs than the unadapted (Urbani) virus and is associated with viremia and mortality in young mice (36), but the histologic changes in the lungs are caused by high titers of virus and cell death without significant infiltrates of inflammatory cells. The heightened susceptibility of elderly patients to SARS led us to develop a pneumonia model in 12- to 14-month-old (mo) BALB/c mice using the Urbani virus. In this model, pulmonary replication of virus was associated with signs of clinical illness and histopathological evidence of disease characterized by bronchiolitis, interstitial pneumonitis, diffuse alveolar damage, and fibrotic scarring (3), thus resembling SARS in the elderly. We evaluated the host response to SARS-CoV infection by examining the gene expression profile in the senescent mouse model and found a robust response to virus infection, with an increased expression of several immune response and cell-to-cell signaling genes, including those for tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), CCL2, CCL3, CXCL10, and IFN-γ (1).In this study, we characterize the cellular immune response to SARS-CoV infection in 12- to 14-mo BALB/c mice in terms of the protein and gene expression of inflammatory mediators, migration of inflammatory cells, and virus-specific T-cell responses in the lungs during the course of disease. We evaluated the role of T cells in disease pathogenesis and viral clearance by depleting T-cell subsets at the time of infection and found an important role for CD4+ T cells (but not CD8+ T cells) in primary infection with SARS-CoV in this model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号