首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   0篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2004年   5篇
  2003年   6篇
  2002年   4篇
  2001年   6篇
  2000年   3篇
  1999年   5篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1981年   1篇
排序方式: 共有43条查询结果,搜索用时 0 毫秒
41.
Due to a rising demand of porcine models with complex genetic modifications for biomedical research, the approaches for their generation need to be adapted. In this study we describe the direct introduction of a gene construct into the pronucleus (PN)-like structure of cloned embryos as a novel strategy for the generation of genetically modified pigs, termed “nuclear injection”. To evaluate the reliability of this new strategy, the developmental ability of embryos in vitro and in vivo as well as the integration and expression efficiency of a transgene carrying green fluorescence protein (GFP) were examined. Eighty percent of the cloned pig embryos (633/787) exhibited a PN-like structure, which met the prerequisite to technically perform the new method. GFP fluorescence was observed in about half of the total blastocysts (21/40, 52.5%), which was comparable to classical zygote PN injection (28/41, 68.3%). In total, 478 cloned embryos injected with the GFP construct were transferred into 4 recipients and from one recipient 4 fetuses (day 68) were collected. In one of the fetuses which showed normal development, the integration of the transgene was confirmed by PCR in different tissues and organs from all three primary germ layers and placenta. The integration pattern of the transgene was mosaic (48 out of 84 single-cell colonies established from a kidney were positive for GFP DNA by PCR). Direct GFP fluorescence was observed macro- and microscopically in the fetus. Our novel strategy could be useful particularly for the generation of pigs with complex genetic modifications.  相似文献   
42.
Background

Super-resolution fluorescence microscopy performed via 3D structured illumination microscopy (3D-SIM) is well established on flat, adherent cells. However, blastomeres of mammalian embryos are non-adherent, round and large. Scanning whole mount mammalian embryos with 3D-SIM is prone to failure due to the movement during scanning and the large distance to the cover glass.

Results

Here we present a highly detailed protocol that allows performing 3D-SIM on blastomeres of mammalian embryos with an image quality comparable to scans in adherent cells. This protocol was successfully tested on mouse, rabbit and cattle embryos and on rabbit spermatozoa.

Conclusions

Our protocol provides detailed instructions on embryo staining, blastomere isolation, blastomere attachment, embedding, correct oil predictions, scanning conditions, and oil correction choices after the first scan. Finally, the most common problems are documented and solutions are suggested. To our knowledge, this protocol presents for the first time a highly detailed and practical way to perform 3D-SIM on mammalian embryos and spermatozoa.

  相似文献   
43.
The efficiency of bovine nuclear transfer using recipient oocytes recovered by ultrasound-guided follicle aspiration (ovum pick-up [OPU]) was investigated. Oocyte donors were selected from 2 distinct maternal lineages (A and B) differing in 11 nucleotide positions of the mitochondrial DNA control region. A total of 1342 cumulus-oocyte complexes (COCs) were recovered. The numbers of total COCs and class I/II COCs recovered from donors of lineage A were higher (P < 0.001) than those obtained from lineage B. Follicle aspiration once per week yielded a higher (P < 0.001) total number of COCs per session than aspiration twice per week, whereas the reproduction status of donors (heifer vs. cow) had no effect on OPU results. Of the 1342 oocytes recovered, 733 (55%) were successfully matured in vitro and used for nuclear transfer. Fusion was achieved in 550 (75%) karyoplast-cytoplast complexes (KCCs), resulting in 277 (50%) cleaved embryos on Day 3. On Day 7 of culture, 84 transferable embryos (15% based on fused KCCs) were obtained. After 38 transfers (10 single, 22 double, and 6 triple transfers), 9 recipients (8 double and 1 triple transfer) were diagnosed as pregnant on Day 28, corresponding to a pregnancy rate of 24%. The proportion of transferable embryos on Day 7 was significantly (P < 0.05) influenced by maternal lineage of oocyte donors and by the frequency of follicle aspiration. Our study demonstrates the feasibility of generating nuclear transfer embryos with defined cytoplasmic background. These will be valuable tools to experimentally dissect the effects of nuclear and cytoplasmic components on embryonic, fetal, and postnatal development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号