首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3765篇
  免费   251篇
  国内免费   5篇
  4021篇
  2023年   14篇
  2022年   54篇
  2021年   85篇
  2020年   39篇
  2019年   62篇
  2018年   94篇
  2017年   68篇
  2016年   119篇
  2015年   171篇
  2014年   191篇
  2013年   251篇
  2012年   302篇
  2011年   330篇
  2010年   213篇
  2009年   166篇
  2008年   240篇
  2007年   262篇
  2006年   265篇
  2005年   248篇
  2004年   212篇
  2003年   173篇
  2002年   203篇
  2001年   24篇
  2000年   21篇
  1999年   21篇
  1998年   28篇
  1997年   20篇
  1996年   21篇
  1995年   15篇
  1994年   14篇
  1993年   13篇
  1992年   8篇
  1991年   8篇
  1990年   5篇
  1989年   2篇
  1988年   3篇
  1986年   5篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   4篇
  1981年   5篇
  1980年   2篇
  1979年   4篇
  1978年   7篇
  1977年   3篇
  1976年   4篇
  1975年   4篇
  1973年   2篇
  1972年   2篇
排序方式: 共有4021条查询结果,搜索用时 15 毫秒
81.
CCK receptors represent potential targets in a number of diseases. Knowledge of CCK receptor binding sites is a prerequisite for the understanding of the molecular basis for their ligand recognition, partial agonism, ligand-induced trafficking of signalling. In the current paper, we report studies from our laboratory and others which have provided new data on the molecular basis of the pharmacology and functioning of CCK1 and CCK2 receptors. It has been shown that: 1) homologous regions of the two receptors are involved in the binding site of CCK, however, positioning of CCK slightly differs in agreement with distinct pharmacophores of CCK toward the two receptors and receptor sequence variations; 2) Binding sites of most of non-peptide agonists/ antagonist are buried in the pocket formed by transmembrane helices and overlap that of CCK; Aromatic amino acids within and near the binding site, especially in helix VI, are involved in receptor activation; 4) Like for other members of family A of G-protein coupled receptors, residues of the binding sites as well as of conserved motifs such as E/DRY, NPXXY are crucial for receptor activation.  相似文献   
82.
Biodegradation - Biological waste degradation is the main driving factor for landfill emissions. In a 2-year laboratory experiment simulating different landfill in-situ aeration scenarios, the...  相似文献   
83.
Among other concerns, safeguarding the supply chains of raw materials is an important task for industrial companies. Therefore, not surprisingly, the number of scientific publications concerning the evaluation of resource criticality has increased in recent years. However, it was noticed that currently published methodologies are too complex to be applied by industrial companies on a daily basis. For this reason, the need to develop a methodology that would allow not only assessing resource criticality, but could also be integrated into widely applied methodological frameworks as an additional driver to improve resource efficiency was identified. Geostrategic supply risk and economic importance were chosen as key indicators to analyze and assess relative resource criticality. The developed methodology was field tested by applying it to a resource‐intensive nitrogen fertilizer production company. Five scenarios for resource efficiency improvements, consisting of cleaner production and industrial symbiosis measures, were investigated. If all the proposed measures were implemented, consumption of natural gas would decrease by 3.552 million cubic meters per year (0.3% of the total consumption). However, not all identified measures contribute to a reduction of the overall criticality of resources for the production company. Nevertheless, the integration of criticality assessments into the widely applied methodologies for development and implementation of resource efficiency innovations is a valuable addition and should be included in the analysis for sustainable innovations and development.  相似文献   
84.
Deletion of Phe-508 (F508del) in the first nucleotide binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) leads to defects in folding and channel gating. NMR data on human F508del NBD1 indicate that an H620Q mutant, shown to increase channel open probability, and the dual corrector/potentiator CFFT-001 similarly disrupt interactions between β-strands S3, S9, and S10 and the C-terminal helices H8 and H9, shifting a preexisting conformational equilibrium from helix to coil. CFFT-001 appears to interact with β-strands S3/S9/S10, consistent with docking simulations. Decreases in T(m) from differential scanning calorimetry with H620Q or CFFT-001 suggest direct compound binding to a less thermostable state of NBD1. We hypothesize that, in full-length CFTR, shifting the conformational equilibrium to reduce H8/H9 interactions with the uniquely conserved strands S9/S10 facilitates release of the regulatory region from the NBD dimerization interface to promote dimerization and thereby increase channel open probability. These studies enabled by our NMR assignments for F508del NBD1 provide a window into the conformational fluctuations within CFTR that may regulate function and contribute to folding energetics.  相似文献   
85.

Background

The blood-brain barrier (BBB), blood-spinal cord barrier (BSCB), and blood-cerebrospinal fluid barrier (BCSFB) control cerebral/spinal cord homeostasis by selective transport of molecules and cells from the systemic compartment. In the spinal cord and brain of both ALS patients and animal models, infiltration of T-cell lymphocytes, monocyte-derived macrophages and dendritic cells, and IgG deposits have been observed that may have a critical role in motor neuron damage. Additionally, increased levels of albumin and IgG have been found in the cerebrospinal fluid in ALS patients. These findings suggest altered barrier permeability in ALS. Recently, we showed disruption of the BBB and BSCB in areas of motor neuron degeneration in the brain and spinal cord in G93A SOD1 mice modeling ALS at both early and late stages of disease using electron microscopy. Examination of capillary ultrastructure revealed endothelial cell degeneration, which, along with astrocyte alteration, compromised the BBB and BSCB. However, the effect of these alterations upon barrier function in ALS is still unclear. The aim of this study was to determine the functional competence of the BSCB in G93A mice at different stages of disease.

Methodology/Principal Findings

Evans Blue (EB) dye was intravenously injected into ALS mice at early or late stage disease. Vascular leakage and the condition of basement membranes, endothelial cells, and astrocytes were investigated in cervical and lumbar spinal cords using immunohistochemistry. Results showed EB leakage in spinal cord microvessels from all G93A mice, indicating dysfunction in endothelia and basement membranes and confirming our previous ultrastructural findings on BSCB disruption. Additionally, downregulation of Glut-1 and CD146 expressions in the endothelial cells of the BSCB were found which may relate to vascular leakage.

Conclusions/Significance

Results suggest that the BSCB is compromised in areas of motor neuron degeneration in ALS mice at both early and late stages of the disease.  相似文献   
86.
Proteins derived from the coding regions of Pyrococcus furiosus are targets for three-dimensional X-ray and NMR structure determination by the Southeast Collaboratory for Structural Genomics (SECSG). Of the 2200 open reading frames (ORFs) in this organism, 220 protein targets were cloned and expressed in a high-throughput (HT) recombinant system for crystallographic studies. However, only 96 of the expressed proteins could be crystallized and, of these, only 15 have led to structures. To address this issue, SECSG has recently developed a two-tier approach to protein production and crystallization. In this approach, tier-1 efforts are focused on producing protein for new Pfu(italics?) targets using a high-throughput approach. Tier-2 protein production efforts support tier-1 activities by (1) producing additional protein for further crystallization trials, (2) producing modified protein (further purification, methylation, tag removal, selenium labeling, etc) as required and (3) serving as a salvaging pathway for failed tier-1 proteins. In a recent study using this two-tiered approach, nine structures were determined from a set of 50 Pfu proteins, which failed to produce crystals suitable for X-ray diffraction analysis. These results validate this approach and suggest that it has application to other HT crystal structure determination applications.  相似文献   
87.
Guliy  O. I.  Markina  L. N.  Ignatov  O. V.  Shchegolev  S. Yu.  Zaitseva  I. S.  Bunin  V. D.  Ignatov  V. V. 《Microbiology》2005,74(1):111-115
The study of the effect of ampicillin on the electrophysical properties of Escherichia coli cells showed that this antibiotic influences the orientational spectra (OSs) of the ampicillin-susceptible E. coli strains K-12 and XL-1 within the frequency range 10–1000 kHz of the orienting electric field and does not affect the OSs of the ampicillin-resistant strains K-12(pUC-18) and XL-1(pHEN1). The change in the electrooptical signal of the ampicillin-susceptible cells was maximum at an ampicillin concentration of 50 µg/ml and did not depend on the exposure time. The conclusion is drawn that changes in the OSs of cells can be used to evaluate their resistance to ampicillin.Translated from Mikrobiologiya, Vol. 74, No. 1, 2005, pp. 126–131.Original Russian Text Copyright © 2005 by Guliy, Markina, Ignatov, Shchegolev, Zaitseva, Bunin, Ignatov.  相似文献   
88.
Although mycosporine-like amino acids (MAAs) have been extensively investigated in reef-building corals, the sources of these MAAs and the process of their interconversion remain a topic of interest. Here we examined ontogenetic change in the abundance of MAAs in planula larvae of the spawning scleractinian coral Goniastrea retiformis in the absence of zooxanthellae and other dietary input. In order to examine the potential contribution of prokaryotes in the synthesis of MAAs in animal tissue, one group of larvae were treated with the antibiotic rifampicin. High concentrations of MAAs (mycosporine-glycine, shinorine, palythinol, asterina-330), were present in the asymbiotic eggs and adults; however, no MAAs were present in the endosymbiotic zooxanthellae. We documented a steady decline in the total MAA concentrations through time in larvae treated with rifampicin; however, in the absence of antibiotic there was a significant increase in the concentration of MAAs, driven by a sharp increase in the abundance of shinorine and palythinol between day 3 and 7. Our results suggest that MAA synthesis and conversion in G. retiformis larvae occurred in the absence of symbiotic zooxanthellae, and indicate a possible contribution of prokaryotes associated with the animal tissue to these processes.  相似文献   
89.
Nucleic acid polymerases have evolved elaborate mechanisms that prevent incorporation of the non-cognate substrates, which are distinguished by both the base and the sugar moieties. While the mechanisms of substrate selection have been studied in single-subunit DNA and RNA polymerases (DNAPs and RNAPs, respectively), the determinants of substrate binding in the multisubunit RNAPs are not yet known. Molecular modeling of Thermus thermophilus RNAP-substrate NTP complex identified a conserved beta' subunit Asn(737) residue in the active site that could play an essential role in selection of the substrate ribose. We utilized the Escherichia coli RNAP model system to assess this prediction. Functional in vitro analysis demonstrates that the substitutions of the corresponding beta' Asn(458) residue lead to the loss of discrimination between ribo- and deoxyribonucleotide substrates as well as to defects in RNA chain extension. Thus, in contrast to the mechanism utilized by the single-subunit T7 RNAP where substrate selection commences in the inactive pre-insertion site prior to its delivery to the catalytic center, the bacterial RNAPs likely recognize the sugar moiety in the active (insertion) site.  相似文献   
90.
Intracellular transport of membrane organelles occurs along microtubules (MTs) and actin filaments (AFs). Although transport along each type of the cytoskeletal tracks is well characterized, the switching between the two types of transport is poorly understood because it cannot be observed directly in living cells. To gain insight into the regulation of the switching of membrane organelles between the two major transport systems, we developed a novel approach that combines live cell imaging with computational modeling. Using this approach, we measured the parameters that determine how fast membrane organelles switch back and forth between MTs and AFs (the switching rate constants) and compared these parameters during different signaling states. We show that regulation involves a major change in a single parameter: the transferring rate from AFs onto MTs. This result suggests that MT transport is the defining factor whose regulation determines the choice of the cytoskeletal tracks during the transport of membrane organelles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号