首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57851篇
  免费   4594篇
  国内免费   4505篇
  66950篇
  2024年   142篇
  2023年   789篇
  2022年   1851篇
  2021年   3044篇
  2020年   2082篇
  2019年   2502篇
  2018年   2344篇
  2017年   1805篇
  2016年   2544篇
  2015年   3627篇
  2014年   4380篇
  2013年   4436篇
  2012年   5286篇
  2011年   4762篇
  2010年   2882篇
  2009年   2598篇
  2008年   2937篇
  2007年   2634篇
  2006年   2261篇
  2005年   1888篇
  2004年   1509篇
  2003年   1420篇
  2002年   1072篇
  2001年   909篇
  2000年   889篇
  1999年   810篇
  1998年   499篇
  1997年   454篇
  1996年   477篇
  1995年   422篇
  1994年   413篇
  1993年   325篇
  1992年   446篇
  1991年   324篇
  1990年   284篇
  1989年   260篇
  1988年   210篇
  1987年   194篇
  1986年   176篇
  1985年   154篇
  1984年   115篇
  1983年   122篇
  1982年   81篇
  1981年   45篇
  1980年   51篇
  1979年   63篇
  1976年   46篇
  1974年   54篇
  1973年   45篇
  1972年   53篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
MicroRNA (miR)-150 has been reported to be dramatically downregulated in human epithelial ovarian cancer (EOC) tissues and patients’ serum compared to normal controls. This study aimed to investigate clinical significance and molecular mechanisms of miR-150 in EOC. In the current study, quantitative real-time PCR analysis showed that miR-150 was significantly downregulated in human EOC tissues compared to normal tissue samples. Then, we demonstrated the significant associations of miR-150 downregulation with aggressive clinicopathological features of EOC patients, including high clinical stage and pathological grade, and shorter overall and progression-free survivals. More importantly, the multivariate analysis identified miR-150 expression as an independent prognostic biomarker in EOC. After that, luciferase reporter assays demonstrated that Zinc Finger E-Box Binding Homeobox 1 (ZEB1), a crucial regulator of epithelial-to-mesenchymal transition (EMT), was a direct target of miR-150 in EOC cells. Moreover, we found that the ectopic expression of miR-150 could efficiently inhibit cell proliferation, invasion and metastasis by suppressing the expression of ZEB1. Furthermore, we also observed a significantly negative correlation between miR-150 and ZEB1 mRNA expression in EOC tissues (rs = –0.45, P<0.001). In conclusion, these findings offer the convincing evidence that aberrant expression of miR-150 may play a role in tumor progression and prognosis in patients with EOC. Moreover, our data reveal that miR-150 may function as a tumor suppressor and modulate EOC cell proliferation, and invasion by directly and negatively regulating ZEB1, implying the re-expression of miR-150 might be a potential therapeutic strategy for EOC.  相似文献   
142.
Chemotherapy and/or radiation therapy are widely used as cancer treatments, but the antitumor effects they produce can be enhanced when combined with immunotherapies. Chemotherapy kills tumor cells, but it also releases tumor antigen and allows the cross-presentation of the tumor antigen to trigger antigen-specific cell-mediated immune responses. Promoting CD4+ T helper cell immune responses can be used to enhance the cross-presentation of the tumor antigen following chemotherapy. The pan HLA-DR binding epitope (PADRE peptide) is capable of generating antigen-specific CD4+ T cells that bind various MHC class II molecules with high affinity and has been widely used in conjunction with vaccines to improve their potency by enhancing CD4+ T cell responses. Here, we investigated whether intratumoral injection of PADRE and the adjuvant CpG into HPV16 E7-expressing TC-1 tumors following cisplatin chemotherapy could lead to potent antitumor effects and antigen-specific cell-mediated immune responses. We observed that treatment with all three agents produced the most potent antitumor effects compared to pairwise combinations. Moreover, treatment with cisplatin, CpG and PADRE was able to control tumors at a distant site, indicating that our approach is able to induce cross-presentation of the tumor antigen. Treatment with cisplatin, CpG and PADRE also enhanced the generation of PADRE-specific CD4+ T cells and E7-specific CD8+ T cells and decreased the number of MDSCs in tumor loci. The treatment regimen presented here represents a universal approach to cancer control.  相似文献   
143.
Mammalian Na+/H+ exchanger isoform one (NHE1) is a plasma membrane protein responsible for pH regulation in mammalian cells. Excess activity of the protein promotes heart disease and is a trigger of metastasis in cancer. Inhibitors of the protein exist but problems in specificity have delayed their clinical application. Here we examined amino acids involved in two modeled inhibitor binding sites (A, B) in human NHE1. Twelve mutations (Asp159, Phe348, Ser351, Tyr381, Phe413, Leu465, Gly466, Tyr467, Leu468, His473, Met476, Leu481) were made and characterized. Mutants S351A, F413A, Y467A, L468A, M476A and L481A had 40–70% of wild type expression levels, while G466A and H473A expressed 22% ~ 30% of the wild type levels. Most mutants, were targeted to the cell surface at levels similar to wild type NHE1, approximately 50–70%, except for F413A and G466A, which had very low surface targeting. Most of the mutants had measurable activity except for D159A, F413A and G466A. Resistance to inhibition by EMD87580 was elevated in mutants F438A, L465A and L468A and reduced in mutants S351A, Y381A, H473A, M476A and L481A. All mutants with large alterations in inhibitory properties showed reduced Na+ affinity. The greatest changes in activity and inhibitor sensitivity were in mutants present in binding site B which is more closely associated with TM4 and C terminal of extracellular loop 5, and is situated between the putative scaffolding domain and transport domain. The results help define the inhibitor binding domain of the NHE1 protein and identify new amino acids involved in inhibitor binding.  相似文献   
144.
145.
Recent investigations have showed that the functional thermogenic adipocytes are present in both infants and adult humans. Accumulating evidence suggests that the coexistence of classical and inducible brown (brite) adipocytes in humans at adulthood and these adipocytes function to generate heat from energy resulting in reducing body fat and improving glucose metabolism. Human thermogenic adipocytes can be differentiated in vitro from stem cells, cell lines, or adipose stromal vascular fraction. Pre-activated human brite adipocytes in vitro can maintain their thermogenic function in normal or obese immunodeficient mice; therefore, they improve glucose homeostasis and reduce fat mass in obese animals. These key findings have opened a new door to use in vitro thermogenic adipocytes as a cell therapy to prevent obesity and related disorders. Thus, this paper intends to highlight our knowledge in aspects of in vitro human brite/brown adipocytes for the further studies.  相似文献   
146.
147.
Du WW  Yang BB  Shatseva TA  Yang BL  Deng Z  Shan SW  Lee DY  Seth A  Yee AJ 《PloS one》2010,5(11):e13828
Increased versican expression in breast tumors is predictive of relapse and has negative impact on survival rates. The C-terminal G3 domain of versican influences local and systemic tumor invasiveness in pre-clinical murine models. However, the mechanism(s) by which G3 influences breast tumor growth and metastasis is not well characterized. Here we evaluated the expression of versican in mouse mammary tumor cell lines observing that 4T1 cells expressed highest levels while 66c14 cells expressed low levels. We exogenously expressed a G3 construct in 66c14 cells and analyzed its effects on cell proliferation, migration, cell cycle progression, and EGFR signaling. Experiments in a syngeneic orthotopic animal model demonstrated that G3 promoted tumor growth and systemic metastasis in vivo. Activation of pERK correlated with high levels of G3 expression. In vitro, G3 enhanced breast cancer cell proliferation and migration by up-regulating EGFR signaling, and enhanced cell motility through chemotactic mechanisms to bone stromal cells, which was prevented by inhibitor AG 1478. G3 expressing cells demonstrated increased CDK2 and GSK-3β (S9P) expression, which were related to cell growth. The activity of G3 on mouse mammary tumor cell growth, migration and its effect on spontaneous metastasis to bone in an orthotopic model was modulated by up-regulating the EGFR-mediated signaling pathway. Taken together, EGFR-signaling appears to be an important pathway in versican G3-mediated breast cancer tumor invasiveness and metastasis.  相似文献   
148.
The alpha subunit of a voltage-sensitive sodium channel characteristic of denervated rat skeletal muscle was cloned and characterized. The cDNA encodes a 2018 amino acid protein (SkM2) that is homologous to other recently cloned sodium channels, including a tetrodotoxin (TTX)-sensitive sodium channel from rat skeletal muscle (SkM1). The SkM2 protein is no more homologous to SkM1 than to the rat brain sodium channels and differs notably from SkM1 in having a longer cytoplasmic loop joining domains 1 and 2. Steady-state mRNA levels for SkM1 and SkM2 are regulated differently during development and following denervation: the SkM2 mRNA level is highest in early development, when TTX-insensitive channels predominate, but declines rapidly with age as SkM1 mRNA increases; SkM2 mRNA is not detectable in normally innervated adult skeletal muscle but increases greater than 100-fold after denervation; rat cardiac muscle has abundant SkM2 mRNA but no detectable SkM1 message. These findings suggest that SkM2 is a TTX-insensitive sodium channel expressed in both skeletal and cardiac muscle.  相似文献   
149.
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号