首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   982篇
  免费   54篇
  国内免费   1篇
  2024年   2篇
  2023年   27篇
  2022年   38篇
  2021年   72篇
  2020年   84篇
  2019年   115篇
  2018年   73篇
  2017年   42篇
  2016年   66篇
  2015年   28篇
  2014年   65篇
  2013年   72篇
  2012年   60篇
  2011年   65篇
  2010年   27篇
  2009年   30篇
  2008年   30篇
  2007年   39篇
  2006年   23篇
  2005年   20篇
  2004年   20篇
  2003年   7篇
  2002年   9篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   6篇
  1995年   4篇
  1992年   1篇
  1988年   1篇
  1983年   2篇
  1982年   1篇
  1949年   1篇
  1938年   1篇
排序方式: 共有1037条查询结果,搜索用时 9 毫秒
141.
Complex anatomical and physiological structure of an excitable tissue (e.g., cardiac tissue) in the body can represent different electrical activities through normal or abnormal behavior. Abnormalities of the excitable tissue coming from different biological reasons can lead to formation of some defects. Such defects can cause some successive waves that may end up to some additional reorganizing beating behaviors like spiral waves or target waves. In this study, formation of defects and the resulting emitted waves in an excitable tissue are investigated. We have considered a square array network of neurons with nearest-neighbor connections to describe the excitable tissue. Fundamentally, electrophysiological properties of ion currents in the body are responsible for exhibition of electrical spatiotemporal patterns. More precisely, fluctuation of accumulated ions inside and outside of cell causes variable electrical and magnetic field. Considering undeniable mutual effects of electrical field and magnetic field, we have proposed the new Hindmarsh–Rose (HR) neuronal model for the local dynamics of each individual neuron in the network. In this new neuronal model, the influence of magnetic flow on membrane potential is defined. This improved model holds more bifurcation parameters. Moreover, the dynamical behavior of the tissue is investigated in different states of quiescent, spiking, bursting and even chaotic state. The resulting spatiotemporal patterns are represented and the time series of some sampled neurons are displayed, as well.  相似文献   
142.
The interactions between estradiol and two carrier proteins, i.e. human serum albumin (HSA) and holo-transferrin (HTF) in aqueous solution at pH = 7.4 were studied by three-dimensional fluorescence emission spectroscopy, isothermal titration calorimetry (ITC), zeta-potential, resonance light-scattering and molecular modeling. Extensive fluorescence quenching was observed throughout the interaction between the drug and both proteins. Moreover, conformational changes were determined by observing the rearrangement of Trp residues during binding of estradiol with HSA and HTF at different concentrations. ITC experiments revealed that, in the presence of estradiol, both van der Waals forces and hydrogen bonding became predominant. In addition, other binding parameters such as enthalpy and entropy changes were determined by the zeta potential method. Molecular modeling suggested that estradiol was situated within sub-domain IB sited in the hydrophobic cluster in Site I, whereas the drug was located in the N-terminal of HTF where it was hydrogen bonded with Ala 670.  相似文献   
143.
In the estrogen-treated rat myometrium, carbachol increased thegeneration of inositol phosphates by stimulating the muscarinic receptor-Gq/G11-phospholipaseC-3 (PLC-3) cascade. Exposure to carbachol resulted in a rapidand specific (homologous) attenuation of the subsequent muscarinicresponses in terms of inositol phosphate production, PLC-3translocation to membrane, and contraction. Refractoriness wasaccompanied by a reduction of membrane muscarinic binding sites and anuncoupled state of residual receptors. Protein kinase C (PKC) alteredthe functionality of muscarinic receptors and contributed to theinitial period of desensitization. A delayed phase of the muscarinicrefractoriness was PKC independent and was associated with adownregulation ofGq/G11.Atropine failed to induce desensitization as well asGq/G11downregulation, indicating that both events involve active occupancy ofthe receptor. Prolonged exposure toAlF4 reduced subsequent AlF4 as well as carbachol-mediatedinositol phosphate responses and similarly induced downregulation ofGq/G11. Data suggest that a decrease in the level ofGq/G11is subsequent to its activation and may account forheterologous desensitization.

  相似文献   
144.
145.
146.
147.
Canola (Brassica napus L.), an agro-economically important crop in the world, is sensitive to many fungal pathogens. One strategy to combat fungal diseases is genetic engineering through transferring genes encoding the pathogenesis-related (PR) proteins such as chitinase which cause the chitin degradation of fungal cell wall. Chitinase Chit42 from Trichoderma atroviride (PTCC5220) plays an important role in biocontrol and has high antifungal activity against a wide range of phytopathogenic fungi. This enzyme lacks a chitin binding domain (ChBD) which is involved in binding activity to insoluble chitin. In the present study, we investigated the effect of chitin binding domain fused to Chit42 when compared with native Chit42. These genes were over-expressed under the CaMV35S promoter in B. napus, R line Hyola 308. Transformation of cotyledonary petioles was achieved by pBISM2 and pBIKE1 constructs containing chimeric and native Chit42 genes respectively, via Agrobacterium method. The insertion of transgenes in T0 generation was verified through polymerase chain reaction (PCR) and Southern blot analysis. Antifungal activity of expressed chitinase in transgenic plants was also investigated by bioassays. The transgenic canola expressing chimeric chitinase showed stronger inhibition against phytopathogenic fungi that indicates the role of chitin binding domain.  相似文献   
148.
Interference competition is a common phenomenon that occurs among adult females of different species to gain the highest food resources at the same time. In this research, extrinsic competition between Aphidius matricariae and Praon volucre on different densities and stages of two important pests of greenhouse crops in the world, Aphis gossypii and Myzus persicae, were investigated. The results of this study showed that total percentage parasitism of second, third and fourth nymphal instars of A. gossypii and M. persicae by A. matricariae, and P. volucre were affected by extrinsic competition. A combination of A. matricariae and P. volucre on A. gossypii had a negative effect on performance of these parasitoids. Although extrinsic competition reduced the efficiency of A. matricariae and P. volucre on M. persicae, total parasitism of M. persicae by A. matricariae and P. volucre (combination of two parasitoids) increased compared to A. matricariae or P. volucre acting alone. Also the results indicated that the extrinsic competition between A. matricariae and P. volucre on both A. gossypii and M. persicae was apparently more intense when presented with 25 hosts compared to 50 and 100 hosts. The results of this research show important information to determine an appropriate combination of these two parasitoid wasps for biological control of A. gossypii and M. persicae in greenhouses.  相似文献   
149.
Agarose gel electrophoresis, absorption, fluorescence, viscosity, and circular dichroism (CD) have been used in exploring the interaction of terbium(III) complex, [Tb(bpy)2Cl3(OH2)] where bipy is 2,2′-bipyridine, with Fish salmon DNA. Agarose gel electrophoresis assay, along with absorption and fluorescence studies, reveal interaction between the corresponding complex and FS-DNA. Also, the binding constants (Kb) and the Stern–Volmer quenching constants (Ksv) of Tb(III) complex with FS-DNA were determined. The calculated thermodynamic parameters suggested that the binding of mentioned complex to FS-DNA was driven mainly by hydrophobic interactions. A comparative study of this complex with respect to the effect of iodide-induced quenching, ionic strength effect, and ethidium bromide exclusion assay reflects binding of explicit to the FS-DNA primarily in a groove fashion. CD and viscosity data also support the groove binding mode. Furthermore, Tb(III) complex have been simultaneously screened for their antibacterial and antifungal activities.  相似文献   
150.
In recent years, using heavy metal compounds such as platinum as anticancer agent is one of the common ways in chemical therapy. In this study, a new anticancer compound of glycine derivatives of Pt(II) complex (amyl-glycine1, 10-phenanthroline Platinum nitrate) was designed, and the biological effects of this novel compound on the alterations in the function and structure of human hemoglobin (Hb) at different temperatures of 25 and 37°C were assessed by applying various spectroscopic (fluorescence and circular dichroism (CD)) and theoretical methods. Fluorescence data indicated the strong ability of Pt(II) complex to quench the intrinsic fluorescence of Hb. The binding constant, number of binding sites, and thermodynamic parameters at two temperatures were calculated, and the results indicated the major possibility of occurring van der Waals force or hydrogen bond interactions in the Pt(II) complex–Hb interaction. For evaluating the alteration of secondary structure of Hb upon interaction with various concentrations of complex, far-UV CD spectra were used and it was observed that in high dose of complex, significant changes were occurred which is indicative of some side effects in overdosing of this complex. On the other hand, the molecular docking results illustrate that are well in agreement in obtaining data with spectroscopy. Above results suggested that using Pt(II) complex as an anticancer agent, model drug in high-dose usage might cause some disordering in structure and function of Hb as well as improve understanding of the side effects of newly designed metal anticancer drugs undergoing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号