首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   995篇
  免费   54篇
  国内免费   1篇
  1050篇
  2024年   4篇
  2023年   29篇
  2022年   46篇
  2021年   72篇
  2020年   84篇
  2019年   115篇
  2018年   73篇
  2017年   42篇
  2016年   66篇
  2015年   28篇
  2014年   65篇
  2013年   72篇
  2012年   61篇
  2011年   66篇
  2010年   26篇
  2009年   30篇
  2008年   30篇
  2007年   39篇
  2006年   23篇
  2005年   20篇
  2004年   20篇
  2003年   7篇
  2002年   9篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   6篇
  1995年   4篇
  1992年   1篇
  1988年   1篇
  1983年   2篇
  1982年   1篇
  1949年   1篇
  1938年   1篇
排序方式: 共有1050条查询结果,搜索用时 15 毫秒
11.
Increasing evidence indicates that the progression of calcific aortic valve disease (CAVD) is influenced by the mechanical forces experienced by valvular interstitial cells (VICs) embedded within the valve matrix. The ability of VICs to sense and respond to tissue-level mechanical stimuli depends in part on cellular-level biomechanical properties, which may change with disease. In this study, we used micropipette aspiration to measure the instantaneous elastic modulus of normal VICs and of VICs induced to undergo pathological differentiation in vitro to osteoblast or myofibroblast lineages on compliant and stiff collagen gels, respectively. We found that VIC elastic modulus increased after subculturing on stiff tissue culture-treated polystyrene and with pathological differentiation on the collagen gels. Fibroblast, osteoblast, and myofibroblast VICs had distinct cellular-level elastic properties that were not fully explained by substrate stiffness, but were correlated with α-smooth muscle actin expression levels. C-type natriuretic peptide, a peptide expressed in aortic valves in vivo, prevented VIC stiffening in vitro, consistent with its ability to inhibit α-smooth muscle actin expression and VIC pathological differentiation. These data demonstrate that VIC phenotypic plasticity and mechanical adaptability are linked and regulated both biomechanically and biochemically, with the potential to influence the progression of CAVD.  相似文献   
12.
Retinopathy of prematurity (ROP) is a multifactorial disease, that cause visual impairment in premature children. The exact pathogenesis and etiology of ROP is unknown and genetic susceptibility is considered as risk factor. Vascular endothelial growth factor (VEGF) plays a major role in retinal neovascularization and subsequently retinal detachment. VEGF polymorphism is associated with proliferative ROP in some studies. We examined the possible association of the VEGF gene polymorphisms with ROP in preterm infants in south of Iran. A total of 111 preterm infants were examined by ophthalmologist and after that were genotyped. Genotyping of the VEGF +405 (rs2010963) and VEGF +936 (rs3025039) was done by the polymerase chain reaction and restriction fragment length polymorphism methods. The frequency of VEGF alleles, genotypes and haplotype distribution were compared between groups. The patients were divided in three groups: 66 to the normal group (normal fundoscopy), and 45 to the ROP group; 30 infants were not treated with Lasertherapy (Regressive group) and 15 treated with Lasertherapy. The frequency of VEGF +405 and VEGF +936 G/C genotypes as well as allele frequencies was not different between groups. No significant difference was found between ROP with treatment and ROP without lasertherapy. Our report indicate that there is no association between the carrier states of gene polymorphisms VEGF +405, VEGF +936 and progression or spontaneous regression of ROP in preterm infants in Iranian population. However, it should be considered that angiogenesis is a complex process and genetic factors in addition to environmental factors are contributed in this pathway.  相似文献   
13.
Gastric cancer is the second cause of cancer-related mortality and the fourth most common cancers worldwide. Owing to the immune modulatory effect of vitamin D in the body, the role of vitamin D receptor gene in vitamin D regulation receives a great deal of research interest. The aim of the current study was to highlight the association between two variants of TaqI and FokI in the vitamin D receptor gene and gastric cancer predisposition in a sample of South Khorasan population. The present investigation consisted of 69 patients affected with gastric cancer and 100 healthy individuals. The genomic DNA was extracted by salting out the protocol from peripheral venous blood. Genotyping of TaqI and FokI variants were performed by PCR-RFLP method. Our findings manifested that TC genotype of TaqI polymorphism was statistically significant between the case and the control groups (p = 0.002). Moreover, the frequency of TC + CC genotypes was statistically significant between the two groups (p = 0.009). Furthermore, we could not find any meaningful association between FokI variant and the participant groups. The present results declared that, in our population, TC genotype of TaqI polymorphism has an association with gastric cancer susceptibility. In addition, more investigation with greater sample sizes is needed to confirm our results.  相似文献   
14.
In the estrogen-treated rat myometrium, carbachol increased thegeneration of inositol phosphates by stimulating the muscarinic receptor-Gq/G11-phospholipaseC-3 (PLC-3) cascade. Exposure to carbachol resulted in a rapidand specific (homologous) attenuation of the subsequent muscarinicresponses in terms of inositol phosphate production, PLC-3translocation to membrane, and contraction. Refractoriness wasaccompanied by a reduction of membrane muscarinic binding sites and anuncoupled state of residual receptors. Protein kinase C (PKC) alteredthe functionality of muscarinic receptors and contributed to theinitial period of desensitization. A delayed phase of the muscarinicrefractoriness was PKC independent and was associated with adownregulation ofGq/G11.Atropine failed to induce desensitization as well asGq/G11downregulation, indicating that both events involve active occupancy ofthe receptor. Prolonged exposure toAlF4 reduced subsequent AlF4 as well as carbachol-mediatedinositol phosphate responses and similarly induced downregulation ofGq/G11. Data suggest that a decrease in the level ofGq/G11is subsequent to its activation and may account forheterologous desensitization.

  相似文献   
15.
Endothermic mammals have a high energy cost to maintain a stable and high body temperature (Tb, around 37°C). Thyroid hormones are a major regulator for energy metabolism and Tb. The gut microbiota is involved in modulating host energy metabolism. However, whether the interaction between the gut microbiota and thyroid hormones is involved in metabolic and thermal regulations is unclear. We hypothesized that thyroid hormones via an interaction with gut microbiota orchestrate host thermogenesis and Tb. l -thyroxine-induced hyperthyroid Mongolian gerbils (Meriones unguiculatus) increased resting metabolic rate (RMR) and Tb, whereas Methimazole-induced hypothyroid animals decreased RMR. Both hypothyroid and hyperthyroid animals differed significantly in faecal bacterial community. Hyperthyroidism increased the relative abundance of pathogenic bacteria, such as Helicobacter and Rikenella, and decreased abundance of beneficial bacteria Butyricimonas and Parabacteroides, accompanied by reduced total bile acids and short-chain fatty acids. Furthermore, the hyperthyroid gerbils transplanted with the microbiota from control donors increased type 2 deiodinase (DIO2) expression in the liver and showed a greater rate of decline of both serum T3 and T4 levels and, consequently, a more rapid recovery of normal RMR and Tb. These findings indicate that thyroid hormones regulate thermogenesis depending on gut microbiota and colonization with normal microbiota by caecal microbial transplantation attenuates hyperthyroid-induced thermogenesis. This work reveals the functional consequences of the gut microbiota-thyroid axis in controlling host metabolic physiology and Tb in endotherms.  相似文献   
16.
17.
The interactions between estradiol and two carrier proteins, i.e. human serum albumin (HSA) and holo-transferrin (HTF) in aqueous solution at pH = 7.4 were studied by three-dimensional fluorescence emission spectroscopy, isothermal titration calorimetry (ITC), zeta-potential, resonance light-scattering and molecular modeling. Extensive fluorescence quenching was observed throughout the interaction between the drug and both proteins. Moreover, conformational changes were determined by observing the rearrangement of Trp residues during binding of estradiol with HSA and HTF at different concentrations. ITC experiments revealed that, in the presence of estradiol, both van der Waals forces and hydrogen bonding became predominant. In addition, other binding parameters such as enthalpy and entropy changes were determined by the zeta potential method. Molecular modeling suggested that estradiol was situated within sub-domain IB sited in the hydrophobic cluster in Site I, whereas the drug was located in the N-terminal of HTF where it was hydrogen bonded with Ala 670.  相似文献   
18.
Occurrence of the family Ismaridae Thomson is recorded for the first time from Iran, represented by a single species, Ismarus rugulosus Förster, 1850. A series of diagnostic characters and morphometric ratios for this species is presented, as well as a distribution map throughout the Holarctic region.  相似文献   
19.
Activity of α-amylase was revealed in the midgut and salivary glands of the wheat and barley pentatomid pest, A. acuminata. The activity was determined in salivary gland more than those in midgut. Optimal activity of the enzyme occurred at 40°C. Optimal pH activity in salivary gland (pH = 6) was more than those in the midgut (pH = 4.5). pH stability analysis of the enzyme showed that the enzyme is more stable at slightly acidic pHs than those at acidic and alkaline pHs. However, α-amylase is more stable at acidic pH in long period of time. Temperature stability analysis determined the enzyme was remarkably active over a broad range of temperature (5–40°C). α-Amylase activity was decreased after addition of MgCl2, Tris, Triton X-100, CuSO4, SDS, urea and CaCl2. The salts NaCl and KCl increased the enzyme activity from midgut and salivary glands. Zymogram analysis of midgut and salivary gland extract showed at least two bands of amylase activity in the midgut and salivary glands.  相似文献   
20.
Most damaging plant diseases have been caused by viruses in the entire world. In tropical and subtropical areas, the damage caused by plant virus leads to great economic and agricultural losses. Single stranded DNA viruses (geminiviruses) are the most perilous pathogens which are responsible for major diseases in agronomic and horticultural crops. Significantly begomoviruses and mastreviruses are the biggest genus of plant infecting viruses, transmitted though Bemisia tabaci and members of Cicadellidae respectively. Plants possesses some naturally existing chemicals term as phyto-chemicals which perform important functions in the plant. Some antioxidant enzymes are used by plants for self-defense upon foreign invasion of infection. This review explains the present perceptive of influence of viral infections on phyto-chemicals, oxidative enzymes and biochemical changes occurring in the plant. Viral infection mediated phyto-chemical changes in plants mainly includes: up and down regulation of photosynthetic pigment, increase in the concentration of phenolic compounds, elevation of starch content in the leaf and up & down regulation of anti-oxidative enzymes including (GPX) guaiacol peroxidase, (PPO) polyphenol oxidase, (APX) ascorbate peroxidase, (SOD) superoxide dismutase and (CTA) catalase. These changes lead to initiation of hypersensitive response, by thicken of the leaf lamina, lignification under the leaf surface, blocking to stomatal openings, systematic cell death, generation of reactive oxidative species (ROS), activation of pathogen mediated resistance pathways i.e., production of salicylic acid and jasmonic acid. Collectively all the physiological changes in the plant due to viral infection supports the activation of defense mechanism of the plant to combat against viral infection by limiting virus in specific area, followed with the production of barriers for pathogen, accumulation of starch in the leaf and excess production of (ROS). These strategies used by the plant to prevent the spread of virus in whole plant and to minimize the risk of severe yield loss.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号