首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   993篇
  免费   54篇
  国内免费   1篇
  1048篇
  2024年   4篇
  2023年   29篇
  2022年   46篇
  2021年   72篇
  2020年   84篇
  2019年   115篇
  2018年   73篇
  2017年   42篇
  2016年   66篇
  2015年   28篇
  2014年   65篇
  2013年   72篇
  2012年   60篇
  2011年   65篇
  2010年   26篇
  2009年   30篇
  2008年   30篇
  2007年   39篇
  2006年   23篇
  2005年   20篇
  2004年   20篇
  2003年   7篇
  2002年   9篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   6篇
  1995年   4篇
  1992年   1篇
  1988年   1篇
  1983年   2篇
  1982年   1篇
  1949年   1篇
  1938年   1篇
排序方式: 共有1048条查询结果,搜索用时 15 毫秒
61.
The application of green-synthesis principles is one of the most impressive research fields for the production of nanoparticles. Different kinds of biological systems have been used for this purpose. In the present study, AuNPs (gold nanoparticles) were prepared within a short time period using a fresh cell extract of the marine microalga Tetraselmis suecica as a reducing agent of HAuCl4 (chloroauric acid) solution. The UV-visible spectrum of the aqueous medium containing AuNPs indicated a peak at 530 nm, corresponding to the surface plasmon absorbance of AuNPs. The X-ray diffraction pattern also showed a Bragg reflection related to AuNPs. Fourier-transform infrared spectroscopy was performed for analysis of surface functional groups of AuNPs. Transmission electron microscopy and particle-size-distribution patterns determined by the laser-light-scattering method confirmed the formation of well-dispersed AuNPs. The most frequent size of particles was 79 nm.  相似文献   
62.
In plant post-embryonic epidermis mitogen-activated protein kinase (MAPK) signaling promotes differentiation of pavement cells and inhibits initiation of stomata. Stomata are cells specialized to modulate gas exchange and water loss. Arabidopsis MAPKs MPK3 and MPK6 are at the core of the signaling cascade; however, it is not well understood how the activity of these pleiotropic MAPKs is constrained spatially so that pavement cell differentiation is promoted only outside the stomata lineage. Here we identified a PP2C-type phosphatase termed AP2C3 (Arabidopsis protein phosphatase 2C) that is expressed distinctively during stomata development as well as interacts and inactivates MPK3, MPK4 and MPK6. AP2C3 co-localizes with MAPKs within the nucleus and this localization depends on its N-terminal extension. We show that other closely related phosphatases AP2C2 and AP2C4 are also MAPK phosphatases acting on MPK6, but have a distinct expression pattern from AP2C3. In accordance with this, only AP2C3 ectopic expression is able to stimulate cell proliferation leading to excess stomata development. This function of AP2C3 relies on the domains required for MAPK docking and intracellular localization. Concomitantly, the constitutive and inducible AP2C3 expression deregulates E2F-RB pathway, promotes the abundance and activity of CDKA, as well as changes of CDKB1;1 forms. We suggest that AP2C3 downregulates the MAPK signaling activity to help maintain the balance between differentiation of stomata and pavement cells.  相似文献   
63.
Coronary artery disease (CAD) is a multicellular disease characterized by chronic inflammation. Peripheral blood-mononuclear cells (PBMCs), as a critical component of immune system, actively cross-talk with pathophysiological conditions induced by endothelial cell injury, reflecting in perturbed PBMC expression. STAT1 is believed to be relevant to CAD pathogenesis through regulating key inflammatory processes and modulating STAT1 expression play key roles in fine-tuning CAD-related inflammatory processes. This study evaluated PBMC expressions of STAT1, and its regulators (miR-150 and miR-223) in a cohort including 72 patients with CAD with significant ( ≥ 50%) stenosis, 30 patients with insignificant ( < 50%) coronary stenosis (ICAD), and 74 healthy controls, and assessed potential of PBMC expressions to discriminate between patients and controls. We designed quantitative real-time polymerase chain reaction (RT-qPCR) assays and identified stable reference genes for normalizing PBMC quantities of miR-150, miR-223, and STAT1 applying geNorm algorithm to six small RNAs and five mRNAs. There was no significant difference between CAD and ICAD patients regarding STAT1 expression. However, both groups of patients had higher levels of STAT1 than healthy controls. miR-150 and miR-223 were differently expressed across three groups of subjects and were downregulated in patients compared with healthy controls, with the lowest expression levels being observed in patients with ICAD. ROC curves suggested that PBMC expressions may separate between different groups of study subjects. PBMC expressions also discriminated different clinical manifestations of CAD from ICADs or healthy controls. In conclusion, the present study reported PBMC dysregulations of STAT1, miR-150, and miR-223, in patients with significant or insignificant coronary stenosis and suggested that these changes may have diagnostic implications.  相似文献   
64.
Abstract

The objective of this study was to determine the effects of cadmium (Cd) toxicity on accumulation, growth, physiological responses, and biochemical characters in summer savory (Satureja hortensis L.). Plants were subjected to different levels of Cd concentrations including 0 (control), 2.5, 5, and 15?mg L?1 in the growing medium. Cd exposure led to a significant increase in root and shoot Cd content. Calculation of bioaccumulation factor, translocation factor, and transfer coefficient revealed that Cd mostly accumulated in roots of S. hortensis and root to shoot transport was effectively restricted. Cd toxicity negatively affected plant growth and significantly reduced chlorophyll content. Contrarily, proline, soluble and reducing carbohydrates, anthocyanin content, and the activity of antioxidant enzymes significantly increased as a result of Cd exposure. Cd application led to a significant increase in essential oil content of S. hortensis. GC-MS analysis revealed that percentage main constitute of S. hortensi, carvacrol, which determines the quality of oil increased under the highest Cd treatment. Based on our findings, S. hortensis can be considered an invaluable alternative crop for mildly Cd-contaminated soils. Besides, due to the high potential of Cd accumulation in the root, S. hortensis may offer a feasible tool for phytostabilization purposes.  相似文献   
65.
Phenol-soluble modulins (PSMs), such as α-PSMs, β-PSMs, and δ-toxin, are virulence peptides secreted by different Staphylococcus aureus strains. PSMs are able to form amyloid fibrils, which may strengthen the biofilm matrix that promotes bacterial colonization of and extended growth on surfaces (e.g., cell tissue) and increases antibiotic resistance. Many components contribute to biofilm formation, including the human-produced highly sulfated glycosaminoglycan heparin. Although heparin promotes S. aureus infection, the molecular basis for this is unclear. Given that heparin is known to induce fibrillation of a wide range of proteins, we hypothesized that heparin aids bacterial colonization by promoting PSM fibrillation. Here, we address this hypothesis using a combination of thioflavin T-fluorescence kinetic studies, CD, FTIR, electron microscopy, and peptide microarrays to investigate the mechanism of aggregation, the structure of the fibrils, and identify possible binding regions. We found that heparin accelerates fibrillation of all α-PSMs (except PSMα2) and δ-toxin but inhibits β-PSM fibrillation by blocking nucleation or reducing fibrillation levels. Given that S. aureus secretes higher levels of α-PSM than β-PSM peptides, heparin is therefore likely to promote fibrillation overall. Heparin binding is driven by multiple positively charged lysine residues in α-PSMs and δ-toxins, the removal of which strongly reduced binding affinity. Binding of heparin did not affect the structure of the resulting fibrils, that is, the outcome of the aggregation process. Rather, heparin provided a scaffold to catalyze or inhibit fibrillation. Based on our findings, we speculate that heparin may strengthen the bacterial biofilm and therefore enhance colonization via increased PSM fibrillation.  相似文献   
66.
Human embryonic stem cells (hESCs) provide a new source for hepatocyte production in translational medicine and cell replacement therapy. The reported hESC-derived hepatocyte-like cells (HLCs) were commonly generated on Matrigel, a mouse cell line-derived extracellular matrix (ECM). Here, we performed the hepatic lineage differentiation of hESCs following a stepwise application of growth factors on a newly developed serum- and xeno-free, simple and cost-benefit ECM, designated “RoGel,” which generated from a modified conditioned medium of human fibroblasts. In comparison with Matrigel, the differentiated HLCs on both ECMs expressed similar levels of hepatocyte-specific genes, secreted α-fetoprotein, and metabolized ammonia, showed glycogen storage activity as well as low-density lipoprotein and indocyanine green uptake. The transplantation of hESC–HLCs into the carbon tetrachloride-injured liver demonstrated incorporation of the cells into the host mouse liver and the expression of albumin. The results suggest that the xeno-free and cost-benefit matrix may be applicable in bioartificial livers and also may facilitating a clinical application of human pluripotent stem cell-derived hepatocytes in the future.  相似文献   
67.
Currently used anti-tubercular drugs target actively growing Mycobacterium tuberculosis (Mtb) but there are no current therapies targeting persistent mycobacteria. Isocitrate lyase (ICL) is an important enzyme of the glyoxylate shunt pathway used by Mtb for sustaining intracellular infection in inflammatory macrophages under conditions of stress such as nutrient depletion and anaerobic metabolism. Since the humans do not possess this enzyme it constitutes an attractive target for selective drug design. Present work describes synthesis and structural characterization of pyruvate-isoniazid conjugates and their copper complexes with potent anti-tubercular activities against M. tuberculosis H37Rv.  相似文献   
68.
Epithelial-mesenchymal transition (EMT) and its reverse process, mesenchymal-epithelial transition (MET), are believed to play key roles in facilitating the metastatic cascade. Metastatic lesions often exhibit a similar epithelial-like state to that of the primary tumour, in particular, by forming carcinoma cell clusters via E-cadherin-mediated junctional complexes. However, the factors enabling mesenchymal-like micrometastatic cells to resume growth and reacquire an epithelial phenotype in the target organ microenvironment remain elusive. In this study, we developed a workflow using image-based cell profiling and machine learning to examine morphological, contextual and molecular states of individual breast carcinoma cells (MDA-MB-231). MDA-MB-231 heterogeneous response to the host organ microenvironment was modelled by substrates with controllable stiffness varying from 0.2kPa (soft tissues) to 64kPa (bone tissues). We identified 3 distinct morphological cell types (morphs) varying from compact round-shaped to flattened irregular-shaped cells with lamellipodia, predominantly populating 2-kPa and >16kPa substrates, respectively. These observations were accompanied by significant changes in E-cadherin and vimentin expression. Furthermore, we demonstrate that the bone-mimicking substrate (64kPa) induced multicellular cluster formation accompanied by E-cadherin cell surface localisation. MDA-MB-231 cells responded to different substrate stiffness by morphological adaptation, changes in proliferation rate and cytoskeleton markers, and cluster formation on bone-mimicking substrate. Our results suggest that the stiffest microenvironment can induce MET.  相似文献   
69.
Developing technologies for scalable production of human organoids has gained increased attention for “organoid medicine” and drug discovery. We developed a scalable and integrated differentiation process for generation of hepatic organoid from human pluripotent stem cells (hPSCs) in a fully controlled stirred tank bioreactor with 150 ml working volume by application of physiological oxygen concentrations in different liver tissue zones. We found that the 20–40% dissolved oxygen concentration [DO] (corresponded to 30–60 mmHg pO2 within the liver tissue) significantly influences the process outcome via regulating the differentiation fate of hPSC aggregates by enhancing mesoderm induction. Regulation of the [DO] at 30% DO resulted in efficient generation of human fetal-like hepatic organoids that had a uniform size distribution and were comprised of red blood cells and functional hepatocytes, which exhibited improved liver-specific marker gene expressions, key liver metabolic functions, and, more important, higher inducible cytochrome P450 activity compared to the other trials. These hepatic organoids were successfully engrafted in an acute liver injury mouse model and produced albumin after implantation. These results demonstrated the significant impact of the dissolved oxygen concentration on hPSC hepatic differentiation fate and differentiation efficacy that should be considered ascritical translational aspect of established scalable liver organoid generation protocols for potential clinical and drug discovery applications.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号