首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   351篇
  免费   47篇
  2021年   5篇
  2019年   4篇
  2018年   7篇
  2016年   3篇
  2015年   10篇
  2014年   9篇
  2013年   4篇
  2012年   10篇
  2011年   17篇
  2010年   12篇
  2009年   8篇
  2008年   10篇
  2007年   15篇
  2006年   15篇
  2005年   16篇
  2004年   8篇
  2003年   9篇
  2002年   8篇
  2001年   12篇
  2000年   14篇
  1999年   9篇
  1997年   4篇
  1996年   4篇
  1994年   3篇
  1992年   2篇
  1991年   4篇
  1990年   4篇
  1988年   4篇
  1987年   6篇
  1986年   6篇
  1985年   9篇
  1984年   3篇
  1983年   7篇
  1982年   7篇
  1980年   5篇
  1979年   16篇
  1978年   10篇
  1977年   4篇
  1976年   11篇
  1975年   11篇
  1974年   12篇
  1973年   9篇
  1972年   5篇
  1971年   7篇
  1970年   3篇
  1969年   5篇
  1968年   8篇
  1966年   4篇
  1965年   2篇
  1890年   2篇
排序方式: 共有398条查询结果,搜索用时 15 毫秒
161.
Toxoplasma gondii is an intracellular protozoan parasite capable of causing devastating infections in immunocompromised and immunologically immature individuals. In this report, we demonstrate the relative independence of T. gondii from its host cell for aminoglycerophospholipid synthesis. The parasite can acquire the lipid precursors serine, ethanolamine, and choline from its environment and use them for the synthesis of its major lipids, phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho), respectively. Dimethylethanolamine (Etn(Me)(2)), a choline analog, dramatically interfered with the PtdCho metabolism of T. gondii and caused a marked inhibition of its growth within human foreskin fibroblasts. In tissue culture medium supplemented with 2 mm Etn(Me)(2), the parasite-induced lysis of the host cells was dramatically attenuated, and the production of parasites was inhibited by more than 99%. The disruption of parasite growth was paralleled by structural abnormalities in its membranes. In contrast, no negative effect on host cell growth and morphology was observed. The data also reveal that the Etn(Me)(2)-supplemented parasite had a time-dependent decrease in its PtdCho content and an equivalent increase in phosphatidyldimethylethanolamine, whereas other major lipids, PtdSer, PtdEtn, and PtdIns, remained largely unchanged. Relative to host cells, the parasites incorporated more than 7 times as much Etn(Me)(2) into their phospholipid. These findings reveal that Etn(Me)(2) selectively alters parasite lipid metabolism and demonstrate how selective inhibition of PtdCho synthesis is a powerful approach to arresting parasite growth.  相似文献   
162.
The hepatitis C virus (HCV)-specific CD4+ T-cell response against nonstructural proteins is strongly associated with successful viral clearance during acute hepatitis C. To further develop these observations into peptide-based vaccines and clinical immunomonitoring tools like HLA class II tetramers, a detailed characterization of immunodominant CD4+ T-cell epitopes is required. We studied peripheral blood mononuclear cells from 20 patients with acute hepatitis C using 83 overlapping 20-mer peptides covering the NS3 helicase and NS4. Eight peptides were recognized by > or = 40% of patients, and specific CD4+ T-cell clones were obtained for seven of these and three additional, subdominant epitopes. Mapping of minimal stimulatory sequences defined epitopes of 8 to 13 amino acids in length, but optimal T-cell stimulation was observed with 10- to 15-mers. While some epitopes were presented by different HLA molecules, others were presented by only a single HLA class II molecule, which has implications for patient selection in clinical trials of peptide-based immunotherapies. In conclusion, using two different approaches we identified and characterized a set of CD4+ T-cell epitopes in the HCV NS3-NS4 region which are immunodominant in patients achieving transient or persistent viral control. This information allows the construction of a valuable panel of HCV-specific HLA class II tetramers for further study of CD4+ T-cell responses in chronic hepatitis C. The finding of immunodominant epitopes with very constrained HLA restriction has implications for patient selection in clinical trials of peptide-based immunotherapies.  相似文献   
163.
Bacterial–bacteriophage interactions are a well-studied and ecologically-important aspect of microbiology. Many commercial fermentation processes are susceptible to bacteriophage infections due to the use of high-density, clonal cell populations. Lytic infections of bacterial cells in these fermentations are especially problematic due to their negative impacts on product quality, asset utilization, and fouling of downstream equipment. Here, we report the isolation and characterization of a novel lytic bacteriophage, referred to as bacteriophage DTL that is capable of rapid lytic infections of an Escherichia coli K12 strain used for commercial production of 1,3-propanediol (PDO). The bacteriophage genome was sequenced and annotated, which identified 67 potential open-reading frames (ORF). The tail fiber ORF, the largest in the genome, was most closely related to bacteriophage RTP, a T1-like bacteriophage reported from a commercial E. coli fermentation process in Germany. To eliminate virulence, both a fully functional Streptococcus thermophilus CRISPR3 plasmid and a customized S. thermophilus CRISPR3 plasmid with disabled spacer acquisition elements and seven spacers targeting the bacteriophage DTL genome were constructed. Both plasmids were separately integrated into a PDO production strain, which was subsequently infected with bacteriophage DTL. The native S. thermophilus CRISPR3 operon was shown to decrease phage susceptibility by approximately 96%, while the customized CRISPR3 operon provided complete resistance to bacteriophage DTL. The results indicate that the heterologous bacteriophage-resistance system described herein is useful in eliminating lytic infections of bacteriophage DTL, which was prevalent in environment surrounding the manufacturing facility.  相似文献   
164.
165.
166.
167.
168.
A cytochrome aa 3-type oxidase was isolated with and without a c-type cytochrome (cytochrome c-557) from Methylococcus capsulatus Bath by ion-exchange and hydrophobic chromatography in the presence of Triton X-100. Although cytochrome c-557 was not a constitutive component of the terminal oxidase, the cytochrome c ascorbate-TMPD oxidase activity of the enzyme decreased dramatically when the ratio of cytochrome c-557 to heme a dropped below 1:3. On denaturing gels, the purified enzyme dissociated into three subunits with molecular weights of 46,000, 28,000 and 20,000. The enzyme contains two heme groups (a and a 3), absorption maximum at 422 nm in the resting state, at 445 and 601 nm in the dithionite reduced form and at 434 and 598 nm in the dithionite reduced plus CO form. Denaturing gels of the cytochrome aa 3-cytochrome c-557 complex showed the polypeptides associated with cytochrome aa 3 plus a heme c-staining subunit with a molecular weight of 37,000. The complex contains approximately two heme a, one heme c, absorption maximum at 420 nm in the resting state and at 421, 445, 522, 557 and 601 nm in the dithionite reduced form. The specific activity of the purified enzyme was 130 mol O2/min · mol heme a compared to 753 mol O2/min · mol heme a when isolated with cytochrome c-557.Abbreviations MMO methan monooxygenase - sMMO soluble methane monooxygenase - pMMO particulate methane monooxygenase - TMPD N,N,N,N-tetramethyl-p-phenylenediamine dihydrochloride - Na2EDTA disodium ethylenediamine-tetraacetic acid  相似文献   
169.
An enzyme capable of the oxidation of hydroxylamine to nitrite was isolated from the obligate methylotroph Methylococcus capsulatus Bath. The absorption spectra in cell extracts, electron paramagnetic resonance spectra, molecular weight, covalent attachment of heme group to polypeptide, and enzymatic activities suggest that the enzyme is similar to cytochrome P-460, a novel iron-containing protein previously observed only in Nitrosomonas europaea. The native and subunit molecular masses of the M. capsulatus Bath protein were 38,900 and 16,390 Da, respectively; the isoelectric point was 6.98. The enzyme has approximately one iron and one copper atom per subunit. The electron paramagnetic resonance spectrum of the protein showed evidence for a high-spin ferric heme. In contrast to the enzyme from N. europaea, a 13-nm blue shift in the soret band of the ferrocytochrome (463 nm in cell extracts to 450 nm in the final sample) occurred during purification. The amino acid composition and N-terminal amino acid sequence of the enzyme from M. capsulatus Bath was similar but not identical to those of cytochrome P-460 of N. europaea. In cell extracts, the identity of the biological electron acceptor is as yet unestablished. Cytochrome c-555 is able to accept electrons from cytochrome P-460, although the purified enzyme required phenazine methosulfate for maximum hydroxylamine oxidation activity (specific activity, 366 mol of O2 per s per mol of enzyme). Hydroxylamine oxidation rates were stimulated approximately 2-fold by 1 mM cyanide and 1.5-fold by 0.1 mM 8-hydroxyquinoline.  相似文献   
170.
Two new 2-D crystal forms of the Escherichia coli chaperone GroEL (cpn60) 2 × 7-mer have been produced using the negative staining-carbon film (NS-CF) technique. These 2-D crystals, which contain the cylindrical GroEL in side-on and end-on orientations, both possess p21 symmetry, with two molecules in the respective unit cells. The crystallographically averaged images correlate well with those obtained by other authors from single particle analysis of GroEL and our own previous crystallographic analysis. 2-D crystallization of the smaller chaperone GroES (cpn10) 7-mer has also been achieved using the NS-CF technique. Crystallographically averaged images of GroES single particle images indicate considerable variation in molecular shape, which is most likely due to varying molecular orientation on the carbon support film. The quaternary structure of GroES does, nevertheless, approximate to a ring-like shape. The complex formed by GroEL and GroES in the presence of ATP at room temperature has been shown to possess a symmetrical hollow ellipsoidal conformation. This symmetrical complex forms in the presence of a 2:1 or greater molar ratio of GroES:GroEL. At lower molar ratios linear chains of GroEL form, apparently linked by GroES in a 1:1 manner, which provide supportive evidence for the ability of both ends of the GroEL cylinder to interact with GroES. The apparent discrepancy between our data and that of other groups who have described an asymmetrical "bullet-shaped" (holo-chaperone) GroEL/ES complex is discussed in detail.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号