首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   35篇
  国内免费   2篇
  2022年   1篇
  2018年   2篇
  2017年   2篇
  2015年   2篇
  2014年   4篇
  2013年   3篇
  2012年   11篇
  2011年   12篇
  2010年   5篇
  2009年   6篇
  2008年   9篇
  2007年   7篇
  2006年   10篇
  2005年   4篇
  2004年   5篇
  2003年   3篇
  2002年   10篇
  2001年   9篇
  2000年   8篇
  1999年   5篇
  1998年   6篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   6篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1982年   5篇
  1981年   7篇
  1980年   2篇
  1979年   9篇
  1978年   6篇
  1977年   6篇
  1976年   3篇
  1975年   2篇
  1974年   5篇
  1973年   3篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1968年   7篇
排序方式: 共有224条查询结果,搜索用时 46 毫秒
41.
Alternative splicing is regulated by cis sequences in the pre-mRNA that serve as binding sites for trans-acting alternative splicing factors. In a previous study, we used bioinformatics and molecular biology to identify and confirm that the intronic hexamer sequence UCUAUC is a nematode alternative splicing regulatory element. In this study, we used RNA affinity chromatography to identify trans factors that bind to this sequence. HRP-2, the Caenorhabditis elegans homolog of human heterogeneous nuclear ribonucleoproteins Q and R, binds to UCUAUC in the context of unc-52 intronic regulatory sequences as well as to RNAs containing tandem repeats of this sequence. The three Us in the hexamer are the most important determinants of this binding specificity. We demonstrate, using RNA interference, that HRP-2 regulates the alternative splicing of two genes, unc-52 and lin-10, both of which have cassette exons flanked by an intronic UCUAUC motif. We propose that HRP-2 is a protein responsible for regulating alternative splicing through binding interactions with the UCUAUC sequence.Alternative pre-mRNA splicing is a mechanism for generating multiple mRNA isoforms from a single gene. This process can allow a gene to encode for more than one protein isoform. For some genes, it is a mechanism for regulating message stability through production of alternative mRNA isoforms that are substrates for the nonsense-mediated mRNA decay pathway (1). The majority of human genes undergo alternative splicing (2), and the process can be regulated in tissue-specific and developmental stage-specific manners. Current models propose that cis elements on the pre-mRNA, in exons and introns, serve as recognition sites for trans-acting protein factors that bind to the pre-mRNA and regulate assembly of the splicing machinery, thus regulating splice site choice (3).In recent years, a number of groups have employed bioinformatics techniques to identify cis splicing regulatory elements (4). These techniques include using multiple interspecies sequence alignments to identify conserved intronic regions, identification of short sequences in exons that are bounded by weak consensus splice sites, and identification of common intronic sequences flanking similarly regulated alternative exons (59). These efforts have added many new sequences to the list of known and potential splicing regulators. The identification of the protein factor partners for these sequences will be important for understanding their function in alternative splicing regulation.Experimental approaches have identified alternative splicing factors that interact with specific cis elements (10), but the number of trans factors discovered still lags behind the number of newly identified cis element partners. Some examples of well-characterized cis element/trans-acting factor interactions include the NOVA K homology domain splicing factor binding to the sequence UCAY (11), the FOX splicing factors binding to the sequence UGCAUG (1214), and hnRNP3 F/H proteins binding to the sequence GGGG (15, 16). By using cross-linking immunoprecipitation followed by large scale sequencing, entire catalogs of RNAs that the splicing factors NOVA, SF2/ASF, and FOX2 bind to in vivo have been determined (1719). These approaches have led to models for how the proteins binding to their cis regulatory elements may alter splicing. These models include a role for the relative position of a cis element to an alternative cassette exon in determining alternative exon inclusion or skipping (18, 19).In a previous bioinformatics analysis of evolutionarily conserved intronic sequences flanking alternatively spliced exons, we identified the hexamer sequence UCUAUC as a novel splicing regulatory element (8). UCUAUC is found flanking both sides of alternative exon 16 of the unc-52 gene of Caenorhabditis elegans. Genetic analysis of a class of viable unc-52 mutants led to the discovery that exons 16–18 are alternative cassette exons and that every combination of skipping and inclusion of these three exons occurs (20). This splicing is regulated by the alternative splicing factor MEC-8 (21). Fig. 1A shows a schematic diagram of the alternatively spliced region of unc-52, with the MEC-8-enhanced alternative splicing events indicated. Using an unc-52 splicing reporter trans gene containing alternative exons 15–19, we previously reported that alternative splicing is regulated by the intronic motif UCUAUC in the intron downstream of exon 16 (8). In addition we showed that this element works cooperatively with a UGCAUG hexamer (the consensus FOX-1-binding site) in the upstream intron to regulate alternative splicing (8).Open in a separate windowFIGURE 1.RNA affinity chromatography identifies HRP-2 as binding to UCUAUC elements. A, schematic representation of the alternatively spliced region of unc-52 (adapted from Ref. 21). The alternative splicing events promoted by MEC-8 are indicated by bold lines. The lines next to introns 15 and 16 are the sites of the UCUAUC elements in those introns whose sequences were used in the RNA affinity chromatography. B, table showing sequences of RNAs immobilized to beads in the RNA affinity chromatography experiment. C, Coomassie-stained SDS-PAGE analysis of RNA affinity chromatography. C. elegans embryo extract was incubated with the different immobilized RNA substrates listed on top of the gel. Proteins identified by mass spectrometry are listed to the right of the gel, with arrows pointing to coincident protein bands. D, the left panel shows the silver stain result for the RNA affinity chromatography experiment. Each lane represents a different immobilized substrate, as indicated above. The band corresponding to HRP-2 is indicated by an arrow. The right panel is an immunoblot of the same gel using anti-HRP-2 polyclonal antibody. E, anti-HRP-2 immunoblot of an RNA affinity chromatography experiment for the indicated substrates.In this study, we report the results of a biochemical identification of a protein factor from C. elegans that binds to the UCUAUC intronic splicing regulatory element. We transcribed different short RNA sequences containing the UCUAUC element in its native intronic context, or as part of a repeating unit, and immobilized these onto agarose beads. After passing embryo extracts across these beads, we found that the protein HRP-2, the C. elegans homolog of the mammalian hnRNP Q/R proteins, binds to this sequence with high affinity. By using RNAi to reduce the level of HRP-2 in worms, we observed changes in alternative splicing of unc-52 and lin-10, two genes that contain UCUAUC elements in introns flanking alternative exons. We propose that HRP-2 is an alternative splicing factor that works through the UCUAUC intronic elements to regulate alternative splicing.  相似文献   
42.

Introduction

In rheumatoid arthritis (RA), synovial fluid (SF) contains a large number of neutrophils that contribute to the inflammation and destruction of the joints. The SF also contains granulocyte-macrophage colony-stimulating factor (GM-CSF), which sustains viability of neutrophils and activates their functions. Using proteomic surveillance, we here tried to elucidate the effects of GM-CSF on neutrophils.

Methods

Neutrophils stimulated by GM-CSF were divided into four subcellular fractions: cytosol, membrane/organelle, nuclei, and cytoskeleton. Then, proteins were extracted from each fraction and digested by trypsin. The produced peptides were detected using matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry (MALDI-TOF MS).

Results

We detected 33 peptide peaks whose expression was upregulated by more than 2.5-fold in GM-CSF stimulated neutrophils and identified 11 proteins out of the 33 peptides using MALDI-TOF/TOF MS analysis and protein database searches. One of the identified proteins was neutrophil gelatinase-associated lipocalin (NGAL). We confirmed that the level of NGAL in SF was significantly higher in patients with RA than in those with osteoarthritis. We next addressed possible roles of the increased NGAL in RA. We analysed proteome alteration of synoviocytes from patients with RA by treatment with NGAL in vitro. We found that, out of the detected protein spots (approximately 3,600 protein spots), the intensity of 21 protein spots increased by more than 1.5-fold and the intensity of 10 protein spots decreased by less than 1 to 1.5-fold as a result of the NGAL treatment. Among the 21 increased protein spots, we identified 9 proteins including transitional endoplasmic reticulum ATPase (TERA), cathepsin D, and transglutaminase 2 (TG2), which increased to 4.8-fold, 1.5-fold and 1.6-fold, respectively. Two-dimensional electrophoresis followed by western blot analysis confirmed the upregulation of TERA by the NGAL treatment and, moreover, the western blot analysis showed that the NGAL treatment changed the protein spots caused by post-translational modification of TERA. Furthermore, NGAL cancelled out the proliferative effects of fibroblast growth factor (FGF)-2 and epidermal growth factor (EGF) on chondrocytes from a patient with RA and proliferative effect of FGF-2 on chondrosarcoma cells.

Conclusions

Our results indicate that GM-CSF contributes to the pathogenesis of RA through upregulation of NGAL in neutrophils, followed by induction of TERA, cathepsin D and TG2 in synoviocytes. NGAL and the upregulated enzymes may therefore play an important role in RA.  相似文献   
43.
44.
45.
Interaction of duramycin with artificial and natural membranes   总被引:6,自引:0,他引:6  
Duramycin is a polypeptide antibiotic (molecular weight 2012) obtained from culture filtrates of Streptomyces cinnamomeus forma azacoluta. In this work, we show that low concentrations of duramycin induced aggregation of lipid vesicles containing unsaturated phosphatidylethanolamine and unsaturated monogalactosyl diglyceride, and of sarcoplasmic reticulum vesicles from rabbit skeletal muscle. Furthermore, duramycin inhibited the ATP-dependent Ca2+ uptake in sarcoplasmic reticulum vesicles without affecting the hydrolysis of ATP or the permeability of Ca2+. Also, duramycin only inhibited the bacteriorhodopsin proton pump reconstituted into phospholipid vesicles containing phosphatidylethanolamine. We have isolated a duramycin-resistant strain of Bacillus subtilis and have mapped the location of duramycin resistance. In this strain, the secretion of protons and influx of calcium were resistant to duramycin, and its lipid composition was profoundly different from that of the parent strain. No phosphatidylethanolamine was detected in the resistant strain. Our findings are consistent with the idea that duramycin recognizes a particular membrane conformation determined by the presence of phosphatidylethanolamine or monogalactosyl diglyceride.  相似文献   
46.
Deregulation of the cell cycle is a hallmark of cancer that enables limitless cell division. To support this malignant phenotype, cells acquire molecular alterations that abrogate or bypass control mechanisms in signaling pathways and cellular checkpoints that normally function to prevent genomic instability and uncontrolled cell proliferation. Consequently, therapeutic targeting of the cell cycle has long been viewed as a promising anti-cancer strategy. Until recently, attempts to target the cell cycle for cancer therapy using selective inhibitors have proven unsuccessful due to intolerable toxicities and a lack of target specificity. However, improvements in our understanding of malignant cell-specific vulnerabilities has revealed a therapeutic window for preferential targeting of the cell cycle in cancer cells, and has led to the development of agents now in the clinic. In this review, we discuss the latest generation of cell cycle targeting anti-cancer agents for breast cancer, including approved CDK4/6 inhibitors, and investigational TTK and PLK4 inhibitors that are currently in clinical trials. In recognition of the emerging population of ER+ breast cancers with acquired resistance to CDK4/6 inhibitors we suggest new therapeutic avenues to treat these patients. We also offer our perspective on the direction of future research to address the problem of drug resistance, and discuss the mechanistic insights required for the successful implementation of these strategies.  相似文献   
47.
The species status of Dermacentor marginatus and Dermacentor reticulatus was evaluated by scanning electron microscope (SEM) examination of adult ticks, cross-breeding experiments and molecular biological analysis of eggs derived from transspecific pairings. The SEM investigations including the morphometric quantification of phenotypic features resulted in an unequivocal differentiation of adult D. marginatus and D. reticulatus ticks. The cross-breeding experiments demonstrated that irrespective of whether female ticks of both species were applied with con- or transspecific male ticks or without males to sheep, they engorged and laid eggs. The larvae, however, developed only in eggs which originated from conspecific matings. A nested polymerase chain reaction (PCR) of the second internal transcribed spacer (ITS2) using the DNA of eggs from transspecific pairings and sequencing of the PCR products revealed two different genotypes. The genotypes of eggs originating from D. marginatus and D. reticulatus females of these pairings differed. However, the eggs deposited by D. marginatus always possessed the same two genotypes as did the eggs produced by D. reticulatus. These results argue for a strict reproductive isolation of D. marginatus and D. reticulatus and, therefore, for a separate species status.  相似文献   
48.
A procedure is described for subcellular fractionation of bull sperm which allows the isolation of outer acrosomal membrane without the use of detergent. After washing to remove seminal plasma contaminants, the acrosomal membrane is removed by homogenization and separated on a two-step sucrose gradient. The isolated membranes have been characterized by light and electron microscopy and enzyme analysis. While the acrosomal enzymes hyaluronidase and acrosin are bound to the isolated membranes, they represent only a small percentage of the total activity and therefore do not provide reliable marker enzymes for this fraction. Subcellular fractionation of sperm also yields information on the solubility of acrosomal enzymes. Two types of acrosomal enzymes have been identified on the basis of their distribution in gradient fractions. Both alpha-fucosidase and beta-N-acetyl glucosaminidase are concentrated in the soluble fraction of the gradient. In contrast, over 70% of the acrosin and hyaluronidase activity remains associated with the sperm pellet. These differences in solubility of these enzymes may reflect differences in their function in fertilization.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号