首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   4篇
  国内免费   1篇
  2022年   4篇
  2021年   5篇
  2020年   2篇
  2019年   7篇
  2018年   7篇
  2017年   6篇
  2016年   7篇
  2015年   5篇
  2014年   4篇
  2013年   1篇
  2012年   8篇
  2011年   7篇
  2010年   3篇
  2009年   3篇
  2008年   6篇
  2007年   8篇
  2006年   3篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1983年   1篇
  1982年   2篇
  1976年   1篇
  1969年   1篇
排序方式: 共有113条查询结果,搜索用时 15 毫秒
11.

Iron deficiency is one of the most prevailing micronutrient deficiencies throughout the globe. Iron malnutrition affects billions of people around the world especially children and pregnant women. Its deficiencies can be overcome through microbial biofortification: a process of deliberately increasing desirable nutrients in crop plants. Plant growth-promoting rhizobacteria (PGPR) can improve iron content in edible plant tissues through different direct and indirect mechanisms. Adding plant growth regulators along with rhizobacteria makes it a novel fortification approach. In the current experiment, the interactive effect of two bacterial isolates (O-13 & K-10) alone and in consortium with l-tryptophan in the presence of iron sulfate was evaluated on growth, physiology, tuber characteristics, and iron concentration in potato (Solanum tuberosum L.). Results revealed that inoculation with PGPR and plant growth regulator (PGR) significantly improved the plant height, straw yield, and the number of tubers per plant. Potato (Solanum tuberosum L.) tuber characteristics (starch content, vitamin-C, relative water content) were also improved significantly. O-13, K-10, and l-tryptophan had significantly improved the iron concentration up to 20.59, 33.12, and 28.95%, respectively. However, inoculation with the microbial consortium and l-tryptophan showed a significant increase of up to one-fold in the iron concentration of potato (Solanum tuberosum L.) as compared with uninoculated control. The results suggest that rhizobacteria can help the plant to uptake nutrients from the soil. These findings concluded on the fact that the interactive effect of microbial assisted biofortification and plant growth regulator is a novel, promising, and cost-effective approach to mitigate micronutrient deficiencies especially in resource-limited countries.

  相似文献   
12.
Gamma radiation, various absorbed doses (0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 krad) effects were evaluated on sunflower (Helianthus annus. L.) germination and growth characteristics. Sunflower healthy seeds were exposed to gamma radiation source Co60 at nuclear institute for food and agriculture and exposed seeds were grown under controlled laboratory conditions. In comparison to control, gamma radiation absorbed doses affected the measured response positively i.e., radical length, plumule length, number of roots, seedling fresh weight, seedling dry weight, germination percentage, time of germination and diameter of hypocotyl of sunflower enhanced up to 83.15%, 70.32%, 73.03%, 4.80%, 3.26%, 72.0%, ? 18.88% and 12.58%, respectively. The time of germination, fresh weight and percent moisture contents enhanced insignificantly, however, the response was higher than control. All gamma radiation absorbed doses showed a stimulatory effect on sunflower germination and seedling growth characteristics. The low gamma radiation absorbed doses were found to be more effective versus higher doses for enhancing the germination and growth characteristics of sunflower. In view of positive effect of gamma radiation of sunflower germination and growth characteristics, it is concluded that this techniques could possibly be used for the enhancement of germination, growth and ultimately yield in sunflower in areas where germination is low due to unfavorable conditions.  相似文献   
13.
Allelopathic bacteria found to selectively inhibit weeds but not wheat in our earlier study were selected to evaluate their impact on three weeds and wheat under axenic conditions. Inoculated seeds of each species were sown in sand jars for 25 days. Results indicated that the applied strains variably inhibited germination of wild oat, little seed canary grass and broad leaved dock from 15.2 to 63.3, 18.5 to 58.7 and 18.4 to 60.5% and dry matter from 12.4 to 65, 22.8 to 81.4 and 21.7 to 71.3% than their controls, respectively. These effects were also evident in other growth parameters. Growth of wheat was significantly improved by four strains while others caused non-significant effects. Selectivity of these strains was also reflected in differential root colonization ability. These strains were characterized for various microbial and biochemical parameters. These strains may further be evaluated for their bioherbicidal activity under natural conditions.  相似文献   
14.
Molecular engineering of plant immunity to confer resistance against plant viruses holds great promise for mitigating crop losses and improving plant productivity and yields, thereby enhancing food security. Several approaches have been employed to boost immunity in plants by interfering with the transmission or lifecycles of viruses. In this review, we discuss the successful application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) (CRISPR/Cas) systems to engineer plant immunity, increase plant resistance to viruses, and develop viral diagnostic tools. Furthermore, we examine the use of plant viruses as delivery systems to engineer virus resistance in plants and provide insight into the limitations of current CRISPR/Cas approaches and the potential of newly discovered CRISPR/Cas systems to engineer better immunity and develop better diagnostics tools for plant viruses. Finally, we outline potential solutions to key challenges in the field to enable the practical use of these systems for crop protection and viral diagnostics.

CRISPR-Cas systems unlock the potential of understanding the molecular basis of plant virus interactions, engineering immunity against plant viruses, and developing sensitive and specific diagnostics.  相似文献   
15.
16.
正Mitochondrial DNA(mt DNA)mutations have been implicated in a broad range of disorders which severely affect human health(Wallace,1999).Some drugs have been developed to slow down pathological changes of mitochondrial disorders.However,there is no effective treatment for patients with mt DNA mutations.mt DNA is less protected and has fewer repair mechanisms than nuclear DNA(n DNA).Such a reality results in a much higher mutation  相似文献   
17.
N-acyl-phosphatidylethanolamine (NAPE) is known to be a precursor for various bioactive N-acylethanolamines including the endocannabinoid anandamide. NAPE is produced in mammals through the transfer of an acyl chain from certain glycerophospholipids to phosphatidylethanolamine (PE) by Ca2+-dependent or -independent N-acyltransferases. The ε isoform of mouse cytosolic phospholipase A2 (cPLA2ε) was recently identified as a Ca2+-dependent N-acyltransferase (Ca-NAT). In the present study, we first showed that two isoforms of human cPLA2ε function as Ca-NAT. We next purified both mouse recombinant cPLA2ε and its two human orthologues to examine their catalytic properties. The enzyme absolutely required Ca2+ for its activity and the activity was enhanced by phosphatidylserine (PS). PS enhanced the activity 25-fold in the presence of 1?mM CaCl2 and lowered the EC50 value of Ca2+ >8-fold. Using a PS probe, we showed that cPLA2ε largely co-localizes with PS in plasma membrane and organelles involved in the endocytic pathway, further supporting the interaction of cPLA2ε with PS in living cells. Finally, we found that the Ca2+-ionophore ionomycin increased [14C]NAPE levels >10-fold in [14C]ethanolamine-labeled cPLA2ε-expressing cells while phospholipase A/acyltransferase-1, acting as a Ca2+-independent N-acyltransferase, was insensitive to ionomycin for full activity. In conclusion, PS potently stimulated the Ca2+-dependent activity and human cPLA2ε isoforms also functioned as Ca-NAT.  相似文献   
18.
Pseudomonas aeruginosa LEC1, a soil isolate from Israel, suppressed septoria tritici blotch of wheat caused bySeptoria tritici. Tn5-751 insertion mutagenesis of strain LEC1 produced one pyoverdine-negative (pvd) and three different pyocyanine-deficient (pcy) mutants. The nonfluorescentpvd mutant, like the wild-type, inhibited growth ofS. tritici on different solid media and suppressed the formation of pycnidia on wheat leaves. In contrast, thepcy mutants had lost part of the inhibitory activity in vitro and also part of the suppressive ability in vivo. It is suggested that antibiosis plays an important role in the suppression of septoria tritici blotch of wheat.  相似文献   
19.
Bactericidal and bacteriostatic activities of an emulsion containing 10.0% (v/v) terpineol, 0.5% (w/v) diphenyliodonium chloride, 11.0% (v/v) ethyl alcohol, and 5.62% saponified mustard oil were tested against a number of different types of organisms. The bactericidal concentration for Salmonella typhosa was 1:400. In the presence of 5.0% horse serum, it increased to 1:250. The bacteriostatic concentration varied from organism to organism; Escherichia coli and Staphylococcus aureus required 4,000 mug/ml for complete bacteriostasis, whereas Corynebacterium diphtheriae, Salmonella paratyphi-A, and Shigella required only 2,000 mug/ml for complete inhibition. A 4.0% concentration of the emulsion killed the spores of Bacillus subtilis within 6 hr.  相似文献   
20.
The phosphoinositide 3 (PI3) kinase plays a pivotal role in the regulation of dendritic cells (DCs), antigen-presenting cells that are able to initiate primary immune responses and to establish immunological memory. PI3 kinase is an endogenous suppressor of interleukin 12 (IL-12) production in DCs that is triggered by Toll-like receptor signaling. Inhibition of IL-12 production limits T helper 1 (Th1) polarization. On the other hand, PI3 kinase is an important regulator of various ion channels. The present study aimed to explore whether ion channels in DCs are regulated by PI3 kinase and whether they are important for DC function. To this end, DCs were isolated from murine bone marrow and ion channel activity was determined by patch clamp. As a result, DCs express voltage-gated K(+) channels (Kv), which are blocked by Stichodactyla helianthus toxin (ShK, 2.5 nM). A significant upregulation of Kv currents was observed upon maturation of DCs as induced by stimulation of the cells with lipopolysaccharide (LPS, 0.1 microg/ml, 48 h). A dramatic increase of Kv current amplitude was observed following preincubation of the cells with LY294002 (100 nM), a specific inhibitor of PI3 kinase. PI3 kinase inhibitor wortmannin (100 nM) similarly increased Kv current. LY294002 treatment was further followed by a significant increase of IL-12 production. ShK (100 nM) significantly blunted the stimulation of IL-12 release by LPS but not when the cells were first pretreated with LY294002. The observations point to Kv channel sensitive and Kv channel insensitive regulation of DC function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号