首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   320篇
  免费   12篇
  2024年   1篇
  2023年   2篇
  2022年   8篇
  2021年   22篇
  2020年   11篇
  2019年   8篇
  2018年   16篇
  2017年   9篇
  2016年   6篇
  2015年   20篇
  2014年   20篇
  2013年   23篇
  2012年   23篇
  2011年   22篇
  2010年   12篇
  2009年   7篇
  2008年   14篇
  2007年   15篇
  2006年   11篇
  2005年   14篇
  2004年   10篇
  2003年   8篇
  2002年   7篇
  2001年   3篇
  2000年   4篇
  1999年   7篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1990年   2篇
  1989年   2篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1980年   1篇
  1979年   2篇
  1969年   4篇
  1968年   1篇
排序方式: 共有332条查询结果,搜索用时 15 毫秒
111.
112.
The quantitative determination of sarcosine is of great importance in clinical chemistry, food and fermentation industries. Elevated sarcosine levels are associated with Alzheimer, dementia, prostate cancer, colorectal cancer, stomach cancer and sarcosinemia. This review summarizes the various methods for quantitative analysis of sarcosine with special emphasis on various strategies of biosensors and their analytical performance. The current bio sensing methods have overcome the drawbacks of conventional methods. Sarcosine biosensors work optimally at pH 7.0 to 8.0 in the linear range of 0.1 to 100?μM within 2 to 17?s and between 25 and 37?°C, within a limit of detection (LOD) between 0.008 and 500?mM. The formulated biosensors can be reused within a stability period of 3–180?days. Future research could be focused to modify existing sarcosine biosensors, leading to simple, reliable, and economical sensors ideally suited for point-of-care treatment.
  • Clinical significance
  • Elevated sarcosine levels are associated with prostate and colorectal cancer, Alzheimer, dementia, stomach cancer and sarcosinemia.

  • Quantitative determination of sarcosine is of great importance in clinical chemistry as well as food and fermentation industries.

  • Attempts made in development of sarcosine biosensors have been reviewed with their advantages and disadvantages, so that scientist and clinicians can improvise the methods of developing more potent sarcosine biosensor applicable in multitudinous fields.

  • This is the first comprehensive review which compares the various immobilization methods, sensing principles, strategies used in biosensors and their analytical performance in detail.

  相似文献   
113.
114.
Dengue and chikungunya are acute viral infections with overlapping clinical symptoms. Both diseases are transmitted by common mosquito vectors resulting in their co‐circulation in a region. Molecular and serological tests specific for both dengue and chikungunya infections were performed on 87 acute phase blood samples collected from patients with suspected dengue/chikungunya infections in Delhi from September to December, 2011. RT‐PCR and IgM ELISA were performed to detect dengue virus (DENV) and chikungunya virus (CHIKV). NS1 and IgG ELISA were also performed to detect DENV specific antigen and secondary DENV infection. DENV infection was detected in 49%, CHIKV infection in 29% and co‐infection with DENV and CHIKV in 10% of the samples by RT‐PCR. DENV serotypes 1, 2 and 3 were detected in this study. Nine DENV‐1 strains, six DENV‐2 strains and 20 CHIKV strains were characterized by DNA sequencing and phylogenetic analysis of their respective envelope protein genes. DENV‐1 strains grouped in the American African genotype, DENV‐2 strains in the Cosmopolitan genotype and CHIKV strains in the East Central South African genotype by phylogenetic analysis. This is one of the few studies reporting the phylogeny of two dengue virus serotypes (DENV‐1 and DENV‐2) and CHIKV. Surveillance and monitoring of DENV and CHIKV strains are important for design of strategies to control impending epidemics.  相似文献   
115.
Snake venoms are cocktails comprising combinations of different proteins, peptides, enzymes and toxins. Snake toxins have diverse characteristics having different molecular configuration, structure and mode of action. Many toxins derived from snake venom have distinct pharmacological activities. Venom from Bungarus fasciatus (commonly known as banded krait) is a species of elapid snake found on the South East Asia and Indian sub-continent, mainly contains neurotoxins. Beta bungartotoxin is the major fraction of Bungarus venom and particularly act pre-synaptically by obstructing neurotransmitter release. This toxin in other snake species functionally forms a heterodimer containing two different subunits (A and B). Dimerization of these two chains is a pre-requisite for the proper functionality of this protein. However, B. fasciatus bungartotoxin contains only B chain and their structural orientation in yet to be resolved. Therefore, it is of interest to describe the predicted structure model of the toxin for functional insights. In this work we analyzed the neurotoxic nature, their alignments, secondary and three dimensional structures, functions, active sites and stability with the help of different bioinformatical tools. A comprehensive analysis of the predicted model provides approaching to the functional interpretation of its molecular action.  相似文献   
116.
Snake venom is an abundant resource of diverse pharmacologically bioactive proteins and peptides and a good natural source of drug lead compounds and used as important research tools in the field of toxicology, pharmacology and neuroscience. Three finger toxins (3FTx) is an important super-family of snake venom proteins which has a conserved three finger like appearance in three dimensional structures. Members of 3FTx family show a wide array of pharmacological effects by targeting different receptors and ion channels with high specificity and many of them are being investigated as potential drug target. Therefore, with a vision to verdict a new edge and attempt we determined the amino acid compositional (%) profile, physiochemical properties, secondary structural and functional analysis and phylogenetic relationship of three finger toxins present in four different elapid snake species namely, Naja naja, Astrotia stokesii, Hydrophis cyanocintus and Pelamis platura using different bioinformatics tools. From the outcome of the current studies, it will be possible to know about a range of biological functions which are responsible mainly for the glowing amino acid composition profile of these proteins. Amino acid composition (%) profile although represents differential amount of different amino acid residues which encompasses a family precise model but all the protein sequence have a conserved amount of cysteine. The analysis of physicochemical properties can be used as a basic approach to contribute in developing rational drug through protein engineering and understanding different physiological function which will be beneficial for the welfare of human being.  相似文献   
117.
The sub-tropical red seaweed Asparagopsis taxiformis is of significant interest due to its ability to store halogenated compounds, including bromoform, which can mitigate methane production in ruminants. Significant scale-up of aquaculture production of this seaweed is required; however, relatively little is known about the molecular mechanisms that control fundamental physiological processes, including the regulatory factors that determine sexual dimorphism in gametophytes. In this study, we used comparative RNA-sequencing analysis between different morphological parts of mature male and female A. taxiformis (lineage 6) gametophytes that resulted in greater number of sex-biased gene expression in tips (containing the reproductive structures for both sexes), compared with the somatic main axis and rhizomes. Further comparative RNA-seq against immature tips was used to identify 62 reproductive sex-biased genes (59 male-biased, 3 female-biased). Of the reproductive male-biased genes, 46% had an unknown function, while others were predicted to be regulatory factors and enzymes involved in signaling. We found that bromoform content obtained from female samples (8.5 ± 1.0 mg·g−1 dry weight) was ~10% higher on average than that of male samples (6.5 ± 1.0 mg·g−1 dry weight), although no significant difference was observed (p > 0.05). There was also no significant difference in the marine bromoform biosynthesis locus gene expression. In summary, our comparative RNA-sequencing analysis provides a first insight into the potential molecular factors relevant to gametogenesis and sexual differentiation in A. taxiformis, with potential benefits for identification of sex-specific markers.  相似文献   
118.
Triosephosphate isomerase (TPI, EC 5.3.1.1) catalyzes the interconversion of dihydroxyacetone-P and glyceraldehyde 3-P in the glycolytic pathway. A constitutively expressed antisense construct for cytosolic TPI was introduced into potato (Solanum tuberosum) using Agrobacterium rhizogenes to examine the metabolic effects of a reduction in cytosolic TPI in roots. We obtained a population of transgenic root clones displaying ~36 to 100?% of the TPI activity found in control clones carrying an empty binary vector. Ion exchange chromatography and immunoblot analysis showed that the antisense strategy significantly decreased the cytosolic TPI isoform, while levels of plastidial TPI activity remained apparently unaffected. Transgenic roots were characterized with respect to the activity of glycolytic enzymes, their metabolite contents and carbon fluxes. Metabolite profiling of sugars, organic acids, amino acids and lipids showed elevated levels of sucrose, glucose, fructose, fumarate, isocitrate, 4-aminobutyrate, alanine, glycine, aromatic amino acids and saturated long chain fatty acids in roots containing the lowest TPI activity. Labelings with (14)C-glucose, (14)C-sucrose and (14)C-acetate indicated that a reduction of cytosolic TPI activity in roots increased carbon metabolism through the pentose phosphate pathway, O(2) uptake and catabolism of sucrose to CO(2), and capacity for lipid synthesis. These results demonstrate that a large reduction of cytosolic TPI alters the distribution of carbon in plant primary metabolism.  相似文献   
119.
The indiscriminate collections of Paphiopedilum species from the wild for their exotic ornamental flowers have rendered these plants endangered. Although the trade of these endangered species from the wild is strictly forbidden, it continues unabated in one or other forms that elude the current identification methods. DNA barcoding that offers identification of a species even if only a small fragment of the organism at any stage of development is available could be of great utility in scrutinizing the illegal trade of both endangered plant and animal species. Therefore, this study was undertaken to develop DNA barcodes of Indian species of Paphiopedilum along with their three natural hybrids using loci from both the chloroplast and nuclear genomes. The five loci tested for their potential as effective barcodes were RNA polymerase-β subunit (rpoB), RNA polymerase-β' subunit (rpoC1), Rubisco large subunit (rbcL) and maturase K (matK) from the chloroplast genome and nuclear ribosomal internal transcribed spacer (nrITS) from the nuclear genome. The intra- and inter-specific divergence values and species discrimination rates were calculated by Kimura 2 parameter (K2P) method using mega 4.0. The matK with 0.9% average inter-specific divergence value yielded 100% species resolution, thus could distinguish all the eight species of Paphiopedilum unequivocally. The species identification capability of these sequences was further confirmed as each of the matK sequences was found to be unique for the species when a blast analysis of these sequences was carried out on NCBI. nrITS, although had 4.4% average inter-specific divergence value, afforded only 50% species resolution. DNA barcodes of the three hybrids also reflected their parentage.  相似文献   
120.
We describe a simple colony overlay procedure for peptidases (COPP) for the rapid fluorogenic detection and quantification of Vibrionaceae from seawater, shellfish, sewage, and clinical samples. The assay detects phosphoglucose isomerase with a lysyl aminopeptidase activity that is produced by Vibrionaceae family members. Overnight cultures are overlaid for 10 min with membranes containing a synthetic substrate, and the membranes are examined for fluorescent foci under UV illumination. Fluorescent foci were produced by all the Vibrionaceae tested, including Vibrio spp., Aeromonas spp., and Plesiomonas spp. Fluorescence was not produced by non-Vibrionaceae pathogens. Vibrio cholerae strains O1, O139, O22, and O155 were strongly positive. Seawater and oysters were assayed, and 87 of 93 (93.5%) of the positive isolates were identified biochemically as Vibrionaceae, principally Vibrio vulnificus, Vibrio parahaemolyticus, Aeromonas hydrophila, Photobacterium damselae, and Shewanella putrefaciens. None of 50 nonfluorescent isolates were Vibrionaceae. No Vibrionaceae were detected in soil, and only A. hydrophila was detected in sewage. The COPP technique may be particularly valuable in environmental and food-testing laboratories and for monitoring water quality in the aquaculture industry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号