首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   351篇
  免费   16篇
  2024年   1篇
  2023年   3篇
  2022年   7篇
  2021年   21篇
  2020年   5篇
  2019年   6篇
  2018年   12篇
  2017年   8篇
  2016年   18篇
  2015年   16篇
  2014年   14篇
  2013年   53篇
  2012年   31篇
  2011年   24篇
  2010年   20篇
  2009年   13篇
  2008年   15篇
  2007年   11篇
  2006年   14篇
  2005年   15篇
  2004年   16篇
  2003年   7篇
  2002年   13篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1989年   1篇
  1988年   1篇
  1987年   5篇
  1986年   3篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
排序方式: 共有367条查询结果,搜索用时 15 毫秒
291.
We studied heterologous expression of xylanase 11A gene of Chaetomium thermophilum in Pichia pastoris and characterized the thermostable nature of the purified gene product. For this purpose, the xylanase 11A gene of C. thermophilum was cloned in P. pastoris GS115 under the control of AOX1 promoter. The maximum extracellular activity of recombinant xylanase (xyn698: gene with intron) was 15.6 U ml−1 while that of recombinant without intron (xyn669) was 1.26 U ml−1 after 96 h growth. The gene product was purified apparently to homogeneity level. The optimum temperature of pure recombinant xylanase activity was 70°C and the enzyme retained its 40.57% activity after incubation at 80°C for 10 min. It exhibited quite lower demand of activation energy, enthalpy, Gibbs free energy, entropy, and xylan binding energy during substrate hydrolysis than that required by that of the donor, thus indicating its thermostable nature. pH-dependent catalysis showed that it was quite stable in a pH range of 5.5–8.5. This revealed that gene was successfully processed in Ppastoris and remained heat stable and may qualify for its potential use in paper and pulp and animal feed applications.  相似文献   
292.
DFNB89 is a novel autosomal recessive nonsyndromic hearing impairment (ARNSHI) locus that was mapped to 16q21-q23.2. Linkage to the region was established by carrying out genome-wide linkage scans in two unrelated, consanguineous Pakistani families segregating ARNSHI. The maximum multipoint LOD score is 9.7 for both families and for each family, a significant maximum LOD score of 6.0 and 3.7 were obtained. The 3-unit support interval and the region of homozygosity for the two families extend from rs717293 (chr16: 62.1?Mb) to rs728929 (chr16: 78.2?Mb) and contain 16.1?Mb of sequence. A total of 146 genes are within the DFNB89 interval. Eight candidate genes, CALB2, CDH1, CDH3, CDH11, HAS3, NOB1, PLEKHG4 and SMPD3, were sequenced, but no potentially causal variants were discovered. DFNB89 is the second ARNSHI locus mapped to chromosome 16.  相似文献   
293.
Single amino acid substitutions in the globin chain are the most common forms of genetic variations that produce hemoglobinopathies--the most widespread inherited disorders worldwide. Several hemoglobinopathies result from homozygosity or compound heterozygosity to beta-globin (HBB) gene mutations, such as that producing sickle cell hemoglobin (HbS), HbC, HbD and HbE. Several of these mutations are deleterious and result in moderate to severe hemolytic anemia, with associated complications, requiring lifelong care and management. Even though many hemoglobinopathies result from single amino acid changes producing similar structural abnormalities, there are functional differences in the generated variants. Using in silico methods, we examined the genetic variations that can alter the expression and function of the HBB gene. Using a sequence homology-based Sorting Intolerant from Tolerant (SIFT) server we have searched for the SNPs, which showed that 200 (80%) non-synonymous polymorphism were found to be deleterious. The structure-based method via PolyPhen server indicated that 135 (40%) non-synonymous polymorphism may modify protein function and structure. The Pupa Suite software showed that the SNPs will have a phenotypic consequence on the structure and function of the altered protein. Structure analysis was performed on the key mutations that occur in the native protein coded by the HBB gene that causes hemoglobinopathies such as: HbC (E→K), HbD (E→Q), HbE (E→K) and HbS (E→V). Atomic Non-Local Environment Assessment (ANOLEA), Yet Another Scientific Artificial Reality Application (YASARA), CHARMM-GUI webserver for macromolecular dynamics and mechanics, and Normal Mode Analysis, Deformation and Refinement (NOMAD-Ref) of Gromacs server were used to perform molecular dynamics simulations and energy minimization calculations on β-Chain residue of the HBB gene before and after mutation. Furthermore, in the native and altered protein models, amino acid residues were determined and secondary structures were observed for solvent accessibility to confirm the protein stability. The functional study in this investigation may be a good model for additional future studies.  相似文献   
294.
In most cells, the major intracellular redox buffer is glutathione (GSH) and its disulfide-oxidized (GSSG) form. The GSH/GSSG system maintains the intracellular redox balance and the essential thiol status of proteins by thiol disulfide exchange. Topoisomerases are thiol proteins and are a target of thiol-reactive substances. In this study, the inhibitory effect of physiological concentration of GSH and GSSG on topoisomerase IIα activity in vitro was investigated. GSH (0-10 mM) inhibited topoisomerase IIα in a concentration-dependent manner while GSSG (1-100 μM) had no significant effect. These findings suggest that the GSH/GSSG system could have a potential in vivo role in regulating topoisomerase IIα activity.  相似文献   
295.
A series of 2-anilino substituted 4-aryl-8H-purines were prepared as potent inhibitors of PDK1, a serine-threonine kinase thought to play a role in the PI3K/Akt signaling pathway, a key mediator of cancer cell growth, survival and tumorigenesis. The synthesis, SAR and ADME properties of this series of compounds are discussed culminating in the discovery of compound 6 which possessed sub-micromolar cell proliferation activity and 65% oral bioavailability in mice.  相似文献   
296.
Hydroxynitrile lyases (HNLs) catalyze the cleavage of cyanohydrins. In the reverse reaction, they catalyze the formation of carbon-carbon bonds by enantioselective condensation of hydrocyanic acid with carbonyls. In this study, we describe two proteins from endophytic bacteria that display activity in the cleavage and the synthesis reaction of (R)-mandelonitrile with up to 74% conversion of benzaldehyde (enantiopreference ee 89%). Both showed high similarity to proteins of the cupin superfamily which so far were not known to exhibit HNL activity.  相似文献   
297.
The induction of ischemic tolerance by preconditioning provides a platform to elucidate endogenous mechanisms of stroke protection. In these studies, we characterize the relationship between hypoxia‐inducible factor (HIF), sphingosine kinase 2 (SphK2), and chemokine (C–C motif) ligand 2 (CCL2) in models of hypoxic or pharmacological preconditioning‐induced ischemic tolerance. A genetics‐based approach using SphK2‐ and CCL2‐null mice showed both SphK2 and CCL2 to be necessary for the induction of ischemic tolerance following preconditioning with hypoxia, the hypoxia‐mimetic cobalt chloride, or the sphingosine‐1‐phosphate (S1P) agonist FTY720. A pharmacological approach confirmed the necessity of HIF signaling for all three preconditioning stimuli, and showed that the SphK/S1P pathway transduces tolerance via the S1P1 receptor. In addition, our data suggest significant cross‐talk between HIF and SphK2‐produced S1P signaling, which together act to up‐regulate CCL2 expression. Overall, HIF, SphK, S1P, and CCL2 participate in a signaling cascade to induce the gene expression responsible for the stroke‐tolerant phenotype established by hypoxic and FTY720 preconditioning. The identification of these common molecular mediators involved in signaling the genomic response to multiple preconditioning stimuli provides several targets for therapeutic manipulation.  相似文献   
298.
299.
300.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号