首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   352篇
  免费   16篇
  2024年   1篇
  2023年   3篇
  2022年   8篇
  2021年   21篇
  2020年   5篇
  2019年   6篇
  2018年   12篇
  2017年   8篇
  2016年   18篇
  2015年   16篇
  2014年   14篇
  2013年   53篇
  2012年   31篇
  2011年   24篇
  2010年   20篇
  2009年   13篇
  2008年   15篇
  2007年   11篇
  2006年   14篇
  2005年   15篇
  2004年   16篇
  2003年   7篇
  2002年   13篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1989年   1篇
  1988年   1篇
  1987年   5篇
  1986年   3篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
排序方式: 共有368条查询结果,搜索用时 31 毫秒
281.
282.
Matrix metalloproteinase-12 (MMP-12), also known as macrophage elastase, is a potent inflammatory mediator and therefore an important pharmacological target. Clinical trial failures of broad-spectrum compound MMP inhibitors suggested that specificity is the key for a successful therapy. To provide the required selectivity, monoclonal antibody (mAb)-based inhibitors are on the rise. However, poor production of active recombinant human MMP-12 catalytic domain (cdMMP-12) presented a technical hurdle for its inhibitory mAb development. We hypothesized that this problem could be solved by designing an expression-optimized cdMMP-12 mutant without structural disruptions at its reaction cleft and surrounding area, and thus isolated active-site inhibitory mAbs could maintain their binding and inhibition functions toward wild-type MMP-12. We combined three advances in the field—PROSS algorithm for cdMMP-12 mutant design, convex paratope antibody library construction, and functional selection for inhibitory mAbs. As a result, isolated Fab inhibitors showed nanomolar affinity and potency toward cdMMP-12 with high selectivity and high proteolytic stability. Particularly, Fab LH11 targeted the reaction cleft of wild-type cdMMP-12 with 75 nM binding KD and 23 nM inhibition IC50. We expect that our methods can promote the development of mAbs inhibiting important proteases, many of which are recalcitrant to functional production.  相似文献   
283.
284.

The fluctuation in temperature adversely affects grain development when the climate changes intermittently. This study investigated the effect of high day/night temperatures (34/30 °C, 38/34 °C and 42/38 °C) for two stress durations (24 h and 48 h) on Triticum aestivum. To ascertain the role of plant growth regulator (PGR) in alleviating the deleterious effects of high temperature stress, the combination of various PGRs (e.g., methyl jasmonate, salicylic acid, ascorbic acid, calcium chloride and indole acetic acid) were foliar sprayed twice; one week prior to commencement of anthesis stage and immediately after the exposure to high temperature stress. In general, the high temperature reduces plant growth, grain setting, and 100-grain weight. High temperature stress causes deterioration of plant photosynthetic machinery through a significant decline in energy dissipation, linear electron flow (LEF) and quantum yield of photosystem II (Phi2) which led to plant death. An increase in the antioxidant enzymes activity (SOD, APX, and CAT) was observed at 38/34 °C, while their activity declined sharply at 42/38 °C. Grain setting and filling were completely inhibited in plants exposed to 42/38 °C even when treated with different combinations of PGRs. Salicylic acid along with methyl jasmonate was the most effective PGR combination resulting in significant improvements in Phi2, NPQt, SOD, grain filling and grain protein content under high temperature stress. A strong correlation was observed between LEF and chlorophyll contents against the number of grains per spike and 100-grain weight. In summary, acute day and night temperature stress adversely affected wheat morphological, physiological, and yield traits, while foliar application of PGRs was partially effective in mitigating these harmful changes.

  相似文献   
285.
286.
A series of isatins incorporating thiazole, thiadiazole, benzothiazole and p-toluene sulfonyl hydrazide moieties, along with their cobalt(II), copper(II), nickel(II) and zinc(II) metal complexes have been synthesized and characterized by elemental analyses, molar conductances, magnetic moments, IR, NMR and electronic spectral data. These compounds have been screened for antibacterial activity against Escherichia coli, Bacillus subtillis, Shigella flexneri, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi, and for antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata using the agar-well diffusion method. All the synthesized compounds have shown good affinity as antibacterial and/or antifungal agents which increased in most of the cases on complexation with the metal ions.  相似文献   
287.
Shape of the protein stability curves changes to achieve higher melting temperature. Broadly, these changes have been classified as upward shift (increased ?Gs), rightward shift (increase in Ts) and flattening of the stability curves (decrease in ?Cp). Comparative studies on homologous mesophilic–thermophilic protein pairs highlighted the differential contribution of these three strategies amongst proteins. But unambiguous way of identification of the strategies, which will be preferred for a protein, is still not achieved. We have performed comparative thermodynamic studies using differential scanning calorimeter (DSC) on thermostable variants of a lipase from Bacillus subtilis. These variants are products of 1, 2, 3 and 4 rounds of directed evolution and harbor mutations having definite contribution in thermostability unlike natural thermophilic proteins. We have shown that upward and rightward shift in stability curves are prime strategies in this lipase. Our results along with that from the other study on laboratory evolved xylanase A suggest that optimization of suboptimal thermodynamic parameters is having a dominant influence in selection of thermodynamic strategies for higher thermostability.  相似文献   
288.

Background

Advanced light microscopy offers sensitive and non-invasive means to image neural activity and to control signaling with photolysable molecules and, recently, light-gated channels. These approaches require precise and yet flexible light excitation patterns. For synchronous stimulation of subsets of cells, they also require large excitation areas with millisecond and micrometric resolution. We have recently developed a new method for such optical control using a phase holographic modulation of optical wave-fronts, which minimizes power loss, enables rapid switching between excitation patterns, and allows a true 3D sculpting of the excitation volumes. In previous studies we have used holographic photololysis to control glutamate uncaging on single neuronal cells. Here, we extend the use of holographic photolysis for the excitation of multiple neurons and of glial cells.

Methods/Principal Findings

The system combines a liquid crystal device for holographic patterned photostimulation, high-resolution optical imaging, the HiLo microscopy, to define the stimulated regions and a conventional Ca2+ imaging system to detect neural activity. By means of electrophysiological recordings and calcium imaging in acute hippocampal slices, we show that the use of excitation patterns precisely tailored to the shape of multiple neuronal somata represents a very efficient way for the simultaneous excitation of a group of neurons. In addition, we demonstrate that fast shaped illumination patterns also induce reliable responses in single glial cells.

Conclusions/Significance

We show that the main advantage of holographic illumination is that it allows for an efficient excitation of multiple cells with a spatiotemporal resolution unachievable with other existing approaches. Although this paper focuses on the photoactivation of caged molecules, our approach will surely prove very efficient for other probes, such as light-gated channels, genetically encoded photoactivatable proteins, photoactivatable fluorescent proteins, and voltage-sensitive dyes.  相似文献   
289.
290.

Background

A peptide able to transduce cardiac tissue specifically, delivering cargoes to the heart, would be of significant therapeutic potential for delivery of small molecules, proteins and nucleic acids. In order to identify peptide(s) able to transduce heart tissue, biopanning was performed in cell culture and in vivo with a M13 phage peptide display library.

Methods and Results

A cardiomyoblast cell line, H9C2, was incubated with a M13 phage 12 amino acid peptide display library. Internalized phage was recovered, amplified and then subjected to a total of three rounds of in vivo biopanning where infectious phage was isolated from cardiac tissue following intravenous injection. After the third round, 60% of sequenced plaques carried the peptide sequence APWHLSSQYSRT, termed cardiac targeting peptide (CTP). We demonstrate that CTP was able to transduce cardiomyocytes functionally in culture in a concentration and cell-type dependent manner. Mice injected with CTP showed significant transduction of heart tissue with minimal uptake by lung and kidney capillaries, and no uptake in liver, skeletal muscle, spleen or brain. The level of heart transduction by CTP also was greater than with a cationic transduction domain.

Conclusions

Biopanning using a peptide phage display library identified a peptide able to transduce heart tissue in vivo efficiently and specifically. CTP could be used to deliver therapeutic peptides, proteins and nucleic acid specifically to the heart.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号