首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   353篇
  免费   16篇
  369篇
  2024年   1篇
  2023年   3篇
  2022年   9篇
  2021年   21篇
  2020年   5篇
  2019年   6篇
  2018年   12篇
  2017年   8篇
  2016年   18篇
  2015年   16篇
  2014年   14篇
  2013年   53篇
  2012年   31篇
  2011年   24篇
  2010年   20篇
  2009年   13篇
  2008年   15篇
  2007年   11篇
  2006年   14篇
  2005年   15篇
  2004年   16篇
  2003年   7篇
  2002年   13篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1989年   1篇
  1988年   1篇
  1987年   5篇
  1986年   3篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
排序方式: 共有369条查询结果,搜索用时 15 毫秒
251.
The Wnt/β-catenin signaling pathway has been etiologically implicated in the development and progression of colorectal cancer. We studied thirteen single nucleotide polymorphisms (SNPs) located in SFRP3 (rs7775), CTNNB1 (β-catenin) [rs4135385, rs13072632], APC (rs454886, rs459552), LRP6 (rs2075241, rs2284396), DKK4 (rs3763511), DKK3 (rs6485350), TCF4 (rs12255372) and AXIN2 (rs3923086, rs3923087, rs4791171) in patients with colorectal cancer (n?=?122) and controls (n?=?110). Evaluation of WNT pathway SNPs showed protective association for rs4135385, located in β-catenin. Additionally, variants in SFRP3 (rs7775) and LRP6 (rs2284396) which did not show any association in the overall analysis were significantly associated with female and old aged colorectal cancer patients, respectively.  相似文献   
252.
The main objectives of this study were to investigate the intra-specific and inter-specific phytochemical diversity and classification of nine important medicinal plant species from Tabuk region (KSA), namely (Pulicaria undulata L., Pulicaria incisa Lam., Artemisia herba-alba Asso., Artemisia monosperma Delile, Artemisia judaica L. and Achillea fragrantissima Forssk. from Asteraceae family, Ducrosia flabellifolia Boiss. from Apiaceae family, Thymus vulgaris L. and Lavandula coronopifolia Poir. from Lamiaceae family); to evaluate the antibacterial potentials of the plant extracts, and to inspect the possible associations between phytochemical diversity and contents of different phytochemical classes with the antibacterial activities of plant extracts. GC/MS technique was used to identify phytochemicals in the plant extracts. The standard disk diffusion technique was used to conduct the antibiotic susceptibility against four pathogenic bacterial species (two Gram positive: Staphylococcus aureus and Bacillus subtilis and two Gram negative species: Pseudomonas aeruginosa and Escherichia coli. A total of 160 different phytochemicals belonging to 30 compound classes were separated and identified. A. fragrantissima had the highest phytochemical diversity and P. incisa had the lowest one. Phytochemical beta diversity was 6.2362. Ethanol outperformed other extraction solvents in terms of antibacterial activity, while Pulicaria undulata and T. vulgaris ranked highest among plants in this regard. Gram positive bacterial species were more sensitive to plant extracts compared to Gram negative species. Phytochemical diversity and antibacterial activity of plant extracts against E. coli and P. aeruginosa were positively correlative, terpenoid and benzene & substituted derivative contents exhibited significant (p<0.05) positive correlations with the antibacterial activity against E. coli, terpenoid contents also showed positive correlation with activity against P. aeruginosa; benzene & derivative showed positive correlation with activity against the rest of bacterial species,  相似文献   
253.
A new series of antibacterial and antifungal furanyl-derived sulfonamides and their cobalt (II), copper (II), nickel (II) and zinc (II) metal complexes have been synthesized, characterized and screened for their in-vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and, for in-vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata. The results of these studies revealed that all compounds showed significant to moderate antibacterial activity. However, the zinc (II) complexes were found to be comparatively much more active as compared to the others. For antifungal activity generally, compounds (22) and (24) showed significant activity against Escherichia coli (a), (6) against Shigella flexeneri (b), (16) and (22) against Pseudomonas aeruginosa (c), (14) and (16) against Salmonella typhi (d), (9) against Staphylococcus aureus (e) and, (14) and (16) against Bacillus subtilis (f) fungal strains. The brine shrimp (Artemia salina) bioassay was also carried out to study their in-vitro cytotoxic properties. Only three compounds, (6), (10) and (23) displayed potent cytotoxic activity with LD50 = 1.8535 × 10? 4, 1.8173 × 10? 4 and 1.9291 × 10? 4 respectively.  相似文献   
254.
Some novel cephalexin-derived furanyl, thiophenyl, pyrrolyl, salicylyl and pyridyl Schiff's bases and their cobalt (II), copper (II), nickel (II) and zinc (II) complexes have been synthesized and studied for their antifungal properties against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata. The presence of metal ions in the investigated Schiff's base complexes reported here lead to significant antifungal activity, whereas the parent ligands were generally less active.  相似文献   
255.
Rational and in vitro evolutionary approaches to improve either protein stability or aggregation resistance were successful, but empirical rules for simultaneous improvement of both stability and aggregation resistance under denaturing conditions are still to be ascertained. We have created a robust variant of a lipase from Bacillus subtilis named “6B” using multiple rounds of in vitro evolution. Tm and optimum activity temperature of 6B is 78 °C and 65 °C, respectively, which is ∼ 22 °C and 30 °C higher than that of wild-type lipase. Most significantly, 6B does not aggregate upon heating. Physical basis of remarkable thermostability and non-aggregating behavior of 6B was explored using X-ray crystallography, NMR and differential scanning calorimetry. Our structural investigations highlight the importance of tightening of mobile regions of the molecule such as loops and helix termini to attain higher thermostability. Accordingly, NMR studies suggest a very rigid structure of 6B lipase. Further investigation suggested that reduction/perturbation of the large hydrophobic patches present in the wild-type protein structure, decreased propensity of amino acid sequence for aggregation and absence of aggregation-prone intermediate during thermal unfolding of 6B can account for its resistance to aggregation. Overall, our study suggest that better anchoring of the loops with the rest of the protein molecule through mutations particularly on the sites that perturb/disturb the exposed hydrophobic patches can simultaneously increase protein stability and aggregation resistance.  相似文献   
256.
To determine the genetic structure and variation of Van cats and some other cats, seven enzyme loci were examined using horizontal starch gel electrophoresis. ME bands were observed for the first time in cats. For the enzyme loci CA ( 1 ), SOD, GPI, and GOT, neither the individual Van cats nor the specimens of other cat species exhibited any variation. These enzymes presented identical bands, all of which were homozygous. With respect to the PGD, ME, and ESD loci, however, genetic variation was observed in all of the cats. Hence, three of the seven gene-enzyme systems (43%) were polymorphic with two alleles, contributing to an estimate of average heterozygosity of 0.33-0.49 for the Van cats. PGD was the most discriminatory among the three polymorphic loci. The phylogenetic tree indicated that the Van, Persian, Turkish Angora, and Turkish Tekir cats are distinct from Siamese and Bombay cats.  相似文献   
257.
Root nodule accommodates various non-nodulating bacteria at varying densities. Present study was planned to identify and characterize the non-nodulating bacteria from the pea plant. Ten fast growing bacteria were isolated from the root nodules of cultivated pea plants. These bacterial isolates were unable to nodulate pea plants in nodulation assay, which indicate the non-rhizobial nature of these bacteria. Bacterial isolates were tested in vitro for plant growth promoting properties including indole acetic acid (IAA) production, nitrogen fixation, phosphate solubilization, root colonization and biofilm formation. Six isolates were able to produce IAA at varying level from 0.86 to 16.16 μg ml?1, with the isolate MSP9 being most efficient. Only two isolates, MSP2 and MSP10, were able to fix nitrogen. All isolates were able to solubilize inorganic phosphorus ranging from 5.57 to 11.73 μg ml?1, except MSP4. Bacterial isolates showed considerably better potential for colonization on pea roots. Isolates MSP9 and MSP10 were most efficient in biofilm formation on polyvinyl chloride, which indicated their potential to withstand various biotic and abiotic stresses, whereas the remaining isolates showed a very poor biofilm formation ability. The most efficient plant growth promoting agents, MSP9 and MSP10, were phylogenetically identified by 16S rRNA gene sequence analysis as Ochrobactrum and Enterobacter, respectively, with 99 % similarity. It is suggested the potential endophytic bacterial strains, Ochrobactrum sp. MSP9 and Enterobacter sp. MSP10, can be used as biofertilizers for various legume and non-legume crops after studying their interaction with the host crop and field evaluation.  相似文献   
258.
259.
260.
Ribosomal protein L16 was digested with Staphylococcus aureus protease V8 and the resulting peptides were separated by reversed-phase high-performance liquid chromatography. One of the fragments, identified by sequence analysis as the N-terminal peptide of L16, was shown to exhibit partial peptide-bond-formation and transesterification activities of peptidyltransferase upon reconstitution with L16-depleted 50S core particles. However, several proteins enhanced these activities. L15 increased both reactions when added to the reconstitution mixture, suggesting a limited capacity of the L16 peptide to incorporate into 50S core particles. In contrast, the interaction of L11 with the N-terminal peptide stimulated the transesterification reaction but not the peptide-bond-forming activity of ribosomes, indicating a different topological domain for these reactions. Also, EF-P, a soluble protein which reconstructs the peptide-bond formation and transesterification reactions on 70S ribosomes, stimulated both peptidyltransferase activities exhibited by the L16 N-terminal peptide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号