首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   14篇
  2022年   1篇
  2021年   4篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   7篇
  2014年   4篇
  2013年   3篇
  2012年   9篇
  2011年   14篇
  2010年   1篇
  2009年   4篇
  2008年   7篇
  2007年   9篇
  2006年   2篇
  2005年   5篇
  2004年   6篇
  2003年   6篇
  2002年   2篇
  2000年   7篇
  1999年   2篇
  1997年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1988年   2篇
  1985年   1篇
  1979年   1篇
  1969年   1篇
排序方式: 共有107条查询结果,搜索用时 234 毫秒
21.
It is generally believed that introns are not translated; therefore, the potential intronic features that may be related to the translation step (occurring after splicing) have yet to be thoroughly studied. Here, focusing on four fungi, we performed for the first time a comprehensive study aimed at characterizing how translation efficiency is encoded in introns and affects their evolution. By analysing their intronome we provide evidence of selection for STOP codons close to the intronic 5′ end, and show that the beginning of introns are selected for significantly high translation, presumably to reduce translation and metabolic costs in cases of non-spliced introns. Ribosomal profiling data analysis in Saccharomyces cerevisiae supports the conjecture that in this organism intron retention frequently occurs, introns are partially translated, and their translation efficiency affects organismal fitness. We show that the reported results are more significant in highly translated and highly spliced genes, but are not associated only with genes with a specific function. We also discuss the potential relation of the reported signals to efficient nonsense-mediated decay due to splicing errors. These new discoveries are supported by population-genetics considerations. In addition, they are contributory steps towards a broader understanding of intron evolution and the effect of silent mutations on gene expression and organismal fitness.  相似文献   
22.
Synopsis The periodic acid-Schiff (PAS) reaction has been studied in sections of mouse liver using a self-assembled microspectrophotometer. Increased colour intensity was obtained up to 4 hr of oxidation with periodic acid and 2 hr treatment with Schiff's reagent. The oxidation curve showed an initial, steep increase in colouration with a levelling off afterwards, that could not be attributed to loss of aldehyde groups. The results obtained from carrying out the PAS reaction on sections pretreated with -amylase suggest that the reaction takes place in two phases in which the outer glucosyl groups of the glycogen molecule are oxidized more rapidly than the inner ones.  相似文献   
23.
Fass E  Amar N  Elazar Z 《Autophagy》2007,3(1):48-50
Atg8, a member of an evolutionarily conserved ubiquitin-like protein family, is involved in multiple membrane trafficking pathways including autophagy. In a recent study, we have identified two functional sites in the yeast Saccharomyces cerevisiae Atg8, one involving residues Tyr49 and Leu50, and the other--located on the opposite side of the molecule--residues Phe77 and Phe79. Here we extended our studies to the mammalian system and report that in LC3 residues Phe80 and Leu82, the equivalents of Phe77 and Phe79 in Atg8, are essential for its C-terminal cleavage. We propose that these residues are part of the Atg4 recognition site.  相似文献   
24.
One of the major challenges that developing organs face is scaling, that is, the adjustment of physical proportions during the massive increase in size. Although organ scaling is fundamental for development and function, little is known about the mechanisms that regulate it. Bone superstructures are projections that typically serve for tendon and ligament insertion or articulation and, therefore, their position along the bone is crucial for musculoskeletal functionality. As bones are rigid structures that elongate only from their ends, it is unclear how superstructure positions are regulated during growth to end up in the right locations. Here, we document the process of longitudinal scaling in developing mouse long bones and uncover the mechanism that regulates it. To that end, we performed a computational analysis of hundreds of three-dimensional micro-CT images, using a newly developed method for recovering the morphogenetic sequence of developing bones. Strikingly, analysis revealed that the relative position of all superstructures along the bone is highly preserved during more than a 5-fold increase in length, indicating isometric scaling. It has been suggested that during development, bone superstructures are continuously reconstructed and relocated along the shaft, a process known as drift. Surprisingly, our results showed that most superstructures did not drift at all. Instead, we identified a novel mechanism for bone scaling, whereby each bone exhibits a specific and unique balance between proximal and distal growth rates, which accurately maintains the relative position of its superstructures. Moreover, we show mathematically that this mechanism minimizes the cumulative drift of all superstructures, thereby optimizing the scaling process. Our study reveals a general mechanism for the scaling of developing bones. More broadly, these findings suggest an evolutionary mechanism that facilitates variability in bone morphology by controlling the activity of individual epiphyseal plates.  相似文献   
25.
26.
MicroRNA-122 (miR-122) enhances hepatitis C virus (HCV) fitness via targeting two sites in the 5'-untranslated region (UTR) of HCV. We used selective 2'-hydroxyl acylation analyzed by primer extension to resolve the HCV 5'-UTR's RNA secondary structure in the presence of miR-122. Nearly all nucleotides in miR-122 are involved in targeting the second site, beyond classic seed base pairings. These additional interactions enhance HCV replication in cell culture. To our knowledge, this is the first biophysical study of this complex to reveal the importance of 'tail' miR-122 nucleotide interactions.  相似文献   
27.
28.
We identified an N-terminal amphipathic helix (AH) in one of hepatitis C virus (HCV)'s nonstructural proteins, NS5A. This AH is necessary and sufficient for membrane localization and is conserved across isolates. Genetically disrupting the AH impairs HCV replication. Moreover, an AH peptide-mimic inhibits the membrane association of NS5A in a dose-dependent manner. These results have exciting implications for the HCV life cycle and novel antiviral strategies.  相似文献   
29.
Docking of a vesicle at the appropriate target membrane involves an interaction between integral membrane proteins located on the vesicle (v-SNAREs) and those located on the target membrane (t-SNAREs). GATE-16 (Golgi-associated ATPase enhancer of 16 kDa) was shown to modulate the activity of SNAREs in the Golgi apparatus and is therefore an essential component of intra-Golgi transport and post-mitotic Golgi re-assembly. GATE-16 contains a ubiquitin fold subdomain, which is terminated at the carboxyl end by an additional amino acid after a conserved glycine residue. In the present study we tested whether the COOH terminus of GATE-16 undergoes post-translational cleavage by a protease which exposes the glycine 116 residue. We describe the isolation and characterization of HsApg4A as a human protease of GATE-16. We show that GATE-16 undergoes COOH-terminal cleavage both in vivo and in vitro, only when the conserved glycine 116 is present. We then utilize an in vitro assay to show that pure HsApg4A is sufficient to cleave GATE-16. The characterization of this protease may give new insights into the mechanism of action of GATE-16 and its other family members.  相似文献   
30.
Presence of a Vanadium Nitrogenase in Azotobacter paspali   总被引:1,自引:0,他引:1       下载免费PDF全文
There have been no previous studies on the genetics of Azotobacter paspali, an aerobic bacterium which forms a highly specific diazotrophic association with Bahia grass (Paspalum notatum). We constructed A. paspali strains defective in the molybdenum nitrogenase so that alternative N2ases could be studied. The cosmid vector pTBE and genomic DNA fragments (~50 kb) of A. paspali ATCC 23367 were used to construct a gene library in Escherichia coli. Recombinant cosmids containing sequences homologous to molybdenum nitrogenase nifDK structural genes were identified by hybridization. A 2.9-kb fragment bearing the putative nifDK genes of A. paspali was subcloned and mutagenized in vitro by the insertion of a kanamycin resistance gene cassette. The mutation was recombined into the chromosome of A. paspali with the suicide vector pCU101. One resultant mutant strain, AP2, was incapable of diazotrophic growth in a molybdenum-containing medium (Nif-) without vanadium but grew well in a molybdenum-deficient medium with vanadium. The nitrogenase system in AP2 reduced acetylene to ethylene and produced ethane as 2.4% of the total products. Molybdenum levels as low as 10 nM prevented the diazotrophic growth of AP2, even in the presence of vanadium at levels up to 10 μM. These results are consistent with the existence of a vanadium nitrogenase system in A. paspali.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号