首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1591篇
  免费   150篇
  国内免费   1篇
  2024年   4篇
  2023年   17篇
  2022年   43篇
  2021年   89篇
  2020年   45篇
  2019年   48篇
  2018年   66篇
  2017年   49篇
  2016年   83篇
  2015年   116篇
  2014年   122篇
  2013年   111篇
  2012年   161篇
  2011年   139篇
  2010年   71篇
  2009年   60篇
  2008年   80篇
  2007年   51篇
  2006年   51篇
  2005年   39篇
  2004年   45篇
  2003年   30篇
  2002年   24篇
  2001年   11篇
  1999年   5篇
  1989年   4篇
  1987年   5篇
  1986年   6篇
  1984年   3篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
  1977年   4篇
  1973年   5篇
  1969年   4篇
  1968年   11篇
  1966年   3篇
  1964年   7篇
  1963年   7篇
  1961年   3篇
  1960年   7篇
  1959年   6篇
  1958年   7篇
  1957年   5篇
  1956年   3篇
  1955年   4篇
  1953年   5篇
  1951年   5篇
  1950年   4篇
  1949年   4篇
排序方式: 共有1742条查询结果,搜索用时 31 毫秒
141.
Rhodoquinone (RQ) is an important cofactor used in the anaerobic energy metabolism of Rhodospirillum rubrum. RQ is structurally similar to ubiquinone (coenzyme Q or Q), a polyprenylated benzoquinone used in the aerobic respiratory chain. RQ is also found in several eukaryotic species that utilize a fumarate reductase pathway for anaerobic respiration, an important example being the parasitic helminths. RQ is not found in humans or other mammals, and therefore inhibition of its biosynthesis may provide a parasite-specific drug target. In this report, we describe several in vivo feeding experiments with R. rubrum used for the identification of RQ biosynthetic intermediates. Cultures of R. rubrum were grown in the presence of synthetic analogs of ubiquinone and the known Q biosynthetic precursors demethylubiquinone, demethoxyubiquinone, and demethyldemethoxyubiquinone, and assays were monitored for the formation of RQ3. Data from time course experiments and S-adenosyl-l-methionine-dependent O-methyltransferase inhibition studies are discussed. Based on the results presented, we have demonstrated that Q is a required intermediate for the biosynthesis of RQ in R. rubrum.Rhodospirillum rubrum is a well-characterized and metabolically diverse member of the family of purple nonsulfur bacteria (29, 61). R. rubrum is typically found in aquatic environments and can adapt to a variety of growth conditions by using photosynthesis, respiration, or fermentation pathways (28, 70). In the light, R. rubrum exhibits photoheterotrophic growth using organic substrates or photoautotrophic growth using CO2 and H2 (15, 70). In the dark, R. rubrum can utilize either aerobic respiration (70, 73) or anaerobic respiration with a fumarate reduction pathway or with nonfermentable substrates in the presence of oxidants such as dimethyl sulfoxide (DMSO) or trimethylamine oxide (15, 58, 73). R. rubrum can also grow anaerobically in the dark by fermentation of sugars in the presence of bicarbonate (58). The focus of this work was the biosynthesis of quinones used by R. rubrum for aerobic and anaerobic respiration.Rhodoquinone (RQ; compound 1 in Fig. Fig.1)1) is an aminoquinone structurally similar to ubiquinone (coenzyme Q or Q [compound 2]) (44); however, the two differ considerably in redox potential (that of RQ is −63 mV, and that of Q is +100 mV) (2). Both RQ and Q have a fully substituted benzoquinone ring and a polyisoprenoid side chain that varies in length (depending on the species; see Fig. Fig.11 for examples). The only difference between the structures is that RQ has an amino substituent (NH2) instead of a methoxy substituent (OCH3) on the quinone ring. While Q is a ubiquitous lipid component involved in aerobic respiratory electron transport (9, 36, 60), RQ functions in anaerobic respiration in R. rubrum (19) and in several other phototrophic purple bacteria (21, 22, 41) and is also present in a few aerobic chemotrophic bacteria, including Brachymonas denitrificans and Zoogloea ramigera (23). In these varied species of bacteria, RQ has been proposed to function in fumarate reduction to maintain NAD+/NADH redox balance, either during photosynthetic anaerobic metabolism (12, 15-18, 64) or in chemotrophic metabolism when the availability of oxygen as a terminal oxidant is limiting (23). Another recent finding is that RQH2 is capable of inducing Q-cycle bypass reactions in the cytochrome bc1 complex in Saccharomyces cerevisiae, resulting in superoxide formation (7). If RQ/RQH2 coexists in the cytoplasmic membrane with Q/QH2 in R. rubrum, it might serve as both a substrate for and an inhibitor of the bc1 complex (47).Open in a separate windowFIG. 1.Proposed pathways for RQ biosynthesis. The number of isoprene units (n) varies by species (in S. cerevisiae, n = 6; in E. coli, n = 8; in C. elegans, n = 9; in helminth parasites, n = 9 or 10; in R. rubrum, n = 10; in humans, n = 10). RQ is not found in S. cerevisiae, E. coli, or humans. Known Coq (from S. cerevisiae) and Ubi (from E. coli) gene products required for the biosynthesis of ubiquinone (Q, compound 2) are labeled. A polyisoprenyl diphosphate (compound 5) is assembled from dimethylallyl disphosphate (compound 3) and isopentyl diphosphate (compound 4). Coupling of compound 5 with p-hydroxybenzoic acid (compound 6) yields 3-polyprenyl-4-hydroxybenzoic acid (compound 7). The next three steps differ between S. cerevisiae and E. coli. However, they merge at the common intermediate (compound 8), which is oxidized to demethyldemethoxyubiquinone (DDMQn, compound 9). RQ (compound 1) has been proposed to arise from compound 9, demethoxyubiquinone (DMQn; compound 10), demethylubiquinone (DMeQn; compound 11), or compound 2 (by pathway A, B, C, or D). Results presented in this work support pathway D as the favored route for RQ biosynthesis in R. rubrum.RQ is also found in the mitochondrial membrane of eukaryotic species capable of fumarate reduction, such as the flagellate Euglena gracilis (25, 53), the free-living nematode Caenorhabditis elegans (62), and the parasitic helminths (65, 66, 68, 72). Similar to R. rubrum, these species can adapt their metabolism to both aerobic and anaerobic conditions throughout their life cycle. For example, most adult parasitic species (e.g., Ascaris suum, Fasciola hepatica, and Haemonchus contortus) rely heavily on fumarate reduction for their energy generation while inside a host organism, where the oxygen tension is very low (30, 65, 72). Under these conditions, the biosynthesis of RQ is upregulated; however, during free-living stages of their life cycle, the helminth parasites use primarily aerobic respiration, which requires Q (30, 65, 72). The anaerobic energy metabolism of the helminthes has been reviewed (63, 67). Humans and other mammalian hosts use Q for aerobic energy metabolism but do not produce or require RQ; therefore, selective inhibition of RQ biosynthesis may lead to highly specific antihelminthic drugs that do not have a toxic effect on the host (35, 48).R. rubrum is an excellent facultative model system for the study of RQ biosynthesis. The complete genome of R. rubrum has recently been sequenced by the Department of Energy Joint Genome Institute, finished by the Los Alamos Finishing Group, and further validated by optical mapping (57). The 16S rRNA sequence of R. rubrum is highly homologous to cognate eukaryotic mitochondrial sequences (46). Due to the similarities in structure, the biosynthetic pathways of RQ and Q have been proposed to diverge from a common precursor (67). Proposed pathways for RQ biosynthesis (A to D), in conjunction with the known steps in Q biosynthesis, are outlined in Fig. Fig.11 (31, 34, 60). Parson and Rudney previously showed that when R. rubrum was grown anaerobically in the light in the presence of [U-14C]p-hydroxybenzoate, 14C was incorporated into both Q10 and RQ10 (50). In their growth experiments, the specific activity of Q10 was measured at its maximal value 15 h after inoculation and then began to decrease. However, the specific activity of RQ10 continued to increase for 40 h before declining. These results suggested that Q10 was a biosynthetic precursor of RQ10, although this was not directly demonstrated using radiolabeled Q10; hence, the possibility remained that the labeled RQ10 was derived from another radiolabeled lipid species. We have done this feeding experiment with a synthetic analog of Q where n = 3 (Q3) and monitored for the production of RQ3. The synthesis and use of farnesylated quinone and aromatic intermediates for characterization of the Q biosynthetic pathway in S. cerevisiae and Escherichia coli has been well documented (4, 5, 38, 52, 59). The other proposed precursors of RQ shown in Fig. Fig.11 were also fed to R. rubrum, and the lipid extracts from these assays were analyzed for the presence of RQ3, i.e., demethyldemethoxyubiquinone-3 (DDMQ3; compound 9), demethoxyubiquinone-3 (DMQ3; compound 10), and demethylubiquinone-3 (DMeQ3; compound 11).In S. cerevisiae and E. coli, the last O-methylation step in Q biosynthesis is catalyzed by the S-adenosyl-l-methionine (SAM)-dependent methyltransferases Coq3 and UbiG, respectively (26, 52); this final methylation step converts DMeQ to Q. Using the NCBI Basic Local Alignment Search Tool, an O-methyltransferase (GeneID no. 3834724 Rru_A0742) that had 41% and 59% sequence identity with Coq3 and UbiG, respectively, was identified in R. rubrum. S-Adenosyl-l-homocysteine (SAH) is a well-known inhibitor of SAM-dependent methyltransferases (13, 24). Because SAH is the transmethylation by-product of SAM-dependent methyltransferases, it is not readily taken up by cells and must be generated in vivo (24). SAH can be produced in vivo from S-adenosine and l-homocysteine thiolactone by endogenous SAH hydrolase (SAHH) (37, 71). A search of the R. rubrum genome also confirmed the presence of a gene encoding SAHH (GeneID no. 3836896 Rru_A3444). It was proposed that if DMeQ is the immediate precursor of RQ, then SAH inhibition of the methyltransferase required for Q biosynthesis should have little effect on RQ production. Conversely, if Q is required for RQ synthesis, then inhibition of Q biosynthesis should have a significant effect on RQ production. Assays were designed to quantify the levels of RQ3 produced from DMeQ3 and Q3 in R. rubrum cultures at various concentrations of SAH.  相似文献   
142.
Hydrothermal synthesis has afforded divalent copper coordination polymers containing bis(4-pyridylformyl)piperazine (4-bpfp) tethers and aromatic meta-dicarboxylate ligands. {[Cu(ip)(4-bpfp)]·2H2O}n (1, ip = isophthalate) possesses a (4, 4) rectangular grid structure with an unusual ABCD stacking pattern along a 41 screw axis. Sterically bulky substituents in the 5-position of the isophthalate ligands reduced the coordination polymer dimensionality, with [Cu2(tBuip)2(4-bpfp)(H2O)2]n (2, tBuip = 5-tert-butylisophthalate) and {[Cu(MeOip)(HMeOip)2(4-bpfp)]·3H2O}n (3, MeOip = 5-methoxyisophthalate) displaying 1D polymeric ladder and chain motifs, respectively. Compound 3 possesses a rare twofold interpenetrated binodal supramolecular hms net with (63)(698) topology. Longer meta-disposed acetate pendant arms induced a doubly interpenetrated 3D primitive cubic topology in {[Cu2(1,3-phda)2(H2O)2(4-bpfp)]}n (4, 1,3-phda = 1,3-phenylenediacetate), which possesses antiferromagnetically coupled {Cu2O2} kernels (J = −6.14(8) cm−1).  相似文献   
143.
We have used limited trypsin digestion and reactivity with PEG-maleimides (MPEG) to study Ca2+-induced conformational changes of IP3Rs in their native membrane environment. We found that Ca2+ decreased the formation of the 95-kDa C-terminal tryptic fragment when detected by an Ab directed at a C-terminal epitope (CT-1) but not with an Ab recognizing a protected intraluminal epitope. This suggests that Ca2+ induces a conformational change in the IP3R that allows trypsin to cleave the C-terminal epitope. Half-maximal effects of Ca2+ were observed at ∼0.5 μm and was sensitive to inhibition by IP3. Ca2+ also stimulated the reaction of MPEG-5 with an endogenous thiol in the 95-kDa fragment. This effect was eliminated when six closely spaced cysteine residues proximal to the transmembrane domains were mutated (C2000S, C2008S, C2010S, C2043S, C2047S, and C2053S) or when the N-terminal suppressor domain (amino acids 1–225) was deleted. A cysteine substitution mutant introduced at the C-terminal residue (A2749C) was freely accessible to MPEG-5 or MPEG-20 in the absence of Ca2+. However, cysteine substitution mutants in the interior of the tail were poorly reactive with MPEG-5, although reactivity was enhanced by Ca2+. We conclude the following: a) that large conformational changes induced by Ca2+ can be detected in IP3Rs in situ; b) these changes may be driven by Ca2+ binding to the N-terminal suppressor domain and expose a group of closely spaced endogenous thiols in the channel domain; and c) that the C-terminal cytosol-exposed tail of the IP3R may be relatively inaccessible to regulatory proteins unless Ca2+ is present.  相似文献   
144.
It has not been possible to measure wave speed in the human coronary artery, because the vessel is too short for the conventional two-point measurement technique used in the aorta. We present a new method derived from wave intensity analysis, which allows derivation of wave speed at a single point. We apply this method in the aorta and then use it to derive wave speed in the human coronary artery for the first time. We measured simultaneous pressure and Doppler velocity with intracoronary wires at the left main stem, left anterior descending and circumflex arteries, and aorta in 14 subjects after a normal coronary arteriogram. Then, in 10 subjects, serial measurements were made along the aorta before and after intracoronary isosorbide dinitrate. Wave speed was derived by two methods in the aorta: 1) the two-site distance/time method (foot-to-foot delay of pressure waveforms) and 2) a new single-point method using simultaneous pressure and velocity measurements. Coronary wave speed was derived by the single-point method. Wave speed derived by the two methods correlated well (r = 0.72, P < 0.05). Coronary wave speed correlated with aortic wave speed (r = 0.72, P = 0.002). After nitrate administration, coronary wave speed fell by 43%: from 16.4 m/s (95% confidence interval 12.6-20.1) to 9.3 m/s (95% confidence interval 6.5-12.0, P < 0.001). This single-point method allows determination of wave speed in the human coronary artery. Aortic wave speed is correlated to coronary wave speed. Finally, this technique detects the prompt fall in coronary artery wave speed with isosorbide dinitrate.  相似文献   
145.
Many nontropical rodent species experience predictable annual variation in resource availability and environmental conditions. Individuals of many animal species engage in energetically expensive processes such as breeding during the spring and summer but bias investment toward processes that promote survival such as immune function during the winter. Generally, the suite of responses associated with the changing seasons can be induced by manipulating day length (photoperiod). Collared lemmings (Dicrostonyx groenlandicus) are arvicoline rodents that inhabit parts of northern Canada and Greenland. Despite the extreme conditions of winter in their native habitat, these lemmings routinely breed during the winter. In the laboratory, collared lemmings have divergent responses to photoperiod relative to other seasonally breeding rodents; short day lengths can stimulate, rather than inhibit, the reproductive system. Male and female collared lemmings were maintained for 11 weeks in 1 of 3 photoperiods (LD 22:2, LD 16:8, or LD 8:16) that induce markedly different phenotypes. Following photoperiod treatment, cell-mediated immune function as assessed by delayed-type hypersensitivity reactions was elevated in lemmings housed in LD 16:8 and LD 8:16 relative to LD 22:2. However, antibody production to a novel antigen was unaffected by photoperiod. Exposure to LD 8:16 induced weight gain, molt to a winter pelage, and in contrast to previous studies, regression of the male, but not the female, reproductive tract. In conclusion, these data indicate that components of immune function among collared lemmings are responsive to changes in day length.  相似文献   
146.
In Neurospora crassa, FRQ, WC-1, and WC-2 proteins comprise the core circadian FRQ-based oscillator that is directly responsive to light and drives daily rhythms in spore development and gene expression. However, physiological and biochemical studies have demonstrated the existence of additional oscillators in the cell that function in the absence of FRQ (collectively termed FRQ-less oscillators [FLOs]). Whether or not these represent temperature-compensated, entrainable circadian oscillators is not known. The authors previously identified an evening-peaking gene, W06H2 (now called clock-controlled gene 16 [ccg-16]), which is expressed with a robust daily rhythm in cells that lack FRQ protein, suggesting that ccg-16 is regulated by a FLO. In this study, the authors provide evidence that the FLO driving ccg-16 rhythmicity is a circadian oscillator. They find that ccg-16 rhythms are generated by a temperature-responsive, temperature-compensated circadian FLO that, similar to the FRQ-based oscillator, requires functional WC-1 and WC-2 proteins for activity. They also find that FRQ is not essential for rhythmic WC-1 protein levels, raising the possibility that this WCFLO is involved in the generation of WC-1 rhythms. The results are consistent with the presence of 2 circadian oscillators within Neurospora cells, which the authors speculate may interact with each other through the shared WC proteins.  相似文献   
147.
Influential research in terrestrial habitats indicates that several ecosystem processes are related to plant biodiversity, yet these links remain poorly studied in marine ecosystems. We conducted one field and one mesocosm experiment to quantify the relative effects of macroalgal species identity and richness on primary production in coral reef macroalgal communities off the north coast of Jamaica. We measured production as the net accumulation of algal biomass in the absence of consumers and as photosynthetic rate using oxygen probes in sealed aquaria. We used two recently developed techniques to attribute deviations in expected relative yield to components associated with species identity or diversity and then to further partition diversity effects into mechanistic components based on dominance, trait-dependent complementarity, and trait-independent complementarity. Our results indicate that algal identity had far greater effects on absolute net growth and photosynthesis than richness. The most diverse mixture of macroalgae did not outperform the most productive monoculture or the average monoculture in either measure of primary production (i.e. we did not find evidence of either transgressive or non-transgressive overyielding). Trait-independent complementarity effects were positive but dominance and trait-dependent complementarity were both negative and became stronger when richness was increased. Thus the potentially positive influence of species interactions and niche partitioning on production were negated by dominance and other negative selection effects. These results demonstrate that the counteracting influence of component effects can diminish the net richness effects on production. This could explain frequently observed weak net richness effects in other aquatic and terrestrial systems and suggests that life history tradeoffs greatly reduce the potential for ecologically relevant plant biodiversity effects on ecosystem properties.  相似文献   
148.
1. Allometric theory makes specific predictions about how density, and consequently biomass, scale with organism size within trophic levels, across trophic levels and across food webs. 2. Diversity-yield relationships suggest that more diverse food webs can sometimes support more biomass through mechanisms involving niche complementarity or selection effects that are sometimes attributed to organism size. 3. We combine the above two approaches and show that, generally, density and biomass scale with organism size within and between trophic levels as predicted by allometric theory. Further, food webs converged in total biomass despite persistent differences in the composition and size of the organisms among food webs; species richness explained deviations from the constant yield of biomass expected from size-abundance relationships. 4. Our results suggest that organism size plays only a transient role in controlling community biomass because population increases or decreases lead to rapid convergence in biomass. Species richness affects community biomass independently by effectively increasing the mass of organisms that can be supported in a given productivity regime.  相似文献   
149.
Our previous studies showed that streptozotocin (STZ)-induced diabetic male rats have increased estradiol and decreased testosterone levels that correlate with renal injury (Xu Q, Wells CC, Garman GH, Asico L, Escano CS, Maric C. Hypertension 51: 1218-1224, 2008). We further showed that either supplementing dihydrotestosterone (DHT) or inhibiting estradiol biosynthesis in these diabetic rats was only partially renoprotective (Manigrasso MB, Sawyer RT, Marbury DC, Flynn ER, Maric C. Am J Physiol Renal Physiol 301: F634-F640, 2011; Xu Q, Prabhu A, Xu S, Manigrassso MB, Maric C. Am J Physiol 297: F307-F315, 2009). The aim of this study was to test the hypothesis that the combined therapy of DHT supplementation and inhibition of estradiol synthesis would afford better renoprotection than either treatment alone. The study was performed in 12-wk-old male nondiabetic (ND), STZ-induced diabetic (D), and STZ-induced diabetic rats that received the combined therapy of 0.75 mg/day of DHT along with 0.15 mg · kg(-1) · day(-1) of an aromatase inhibitor, anastrozole (Dta), for 12 wk. Treatment with the combined therapy resulted in attenuation of albuminuria by 84%, glomerulosclerosis by 55%, and tubulointerstitial fibrosis by 62%. In addition, the combined treatment decreased the density of renal cortical CD68-positive cells by 70% and decreased protein expression of transforming growth factor-β protein expression by 60%, collagen type IV by 65%, TNF-α by 55%, and IL-6 by 60%. We conclude that the combined treatment of DHT and blocking aromatase activity in diabetic male STZ-induced diabetic rats provides superior treatment than either treatment alone in the prevention of diabetic renal disease.  相似文献   
150.
Previous studies have demonstrated that renoprotective effects of C-peptide in experimental models of diabetes-induced renal disease may be mediated via lowering blood glucose. The present study examined the renoprotective effects of C-peptide in a model of nondiabetic renal disease, the Dahl salt-sensitive (SS/jr) rat. SS/jr rats were placed on a 2% NaCl diet for 2 wk (HS2, resulting in mild to moderate renal injury) or 4 wk (HS4, resulting in advanced renal injury) and then received either vehicle (veh) or C-peptide (Cpep) for additional 4 wk. Urine albumin (UAE) and protein (UPE) excretion rates were measured at baseline (i.e., before initiation of veh or Cpep treatment) and 4 wk later (i.e., at the time of death). Glomerular permeability, indexes of glomerulosclerosis and tubulointerstitial fibrosis, the presence of inflammatory cells, and protein expression of transforming growth factor-β (TGF-β) and podocin were measured at the time of death. In HS2 + veh rats, UAE and UPE increased by 74 and 92%, respectively, from baseline and the time of death. While HS2 + Cpep attenuated this increase in UAE and UPE, HS4 + Cpep had no effect on these parameters. Similarly, HS2 + Cpep reduced glomerular permeability, tubulointerstitial fibrosis, renal inflammation, TGF-β, and podocin protein expression, while HS4 + Cpep had no effect. These studies indicate that C-peptide is renoprotective in nondiabetic experimental models with mild to moderate renal injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号