首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2237篇
  免费   216篇
  国内免费   1篇
  2023年   17篇
  2022年   42篇
  2021年   101篇
  2020年   51篇
  2019年   52篇
  2018年   75篇
  2017年   54篇
  2016年   98篇
  2015年   128篇
  2014年   143篇
  2013年   139篇
  2012年   196篇
  2011年   155篇
  2010年   83篇
  2009年   67篇
  2008年   88篇
  2007年   77篇
  2006年   64篇
  2005年   62篇
  2004年   57篇
  2003年   51篇
  2002年   33篇
  2001年   30篇
  2000年   24篇
  1999年   19篇
  1997年   17篇
  1993年   10篇
  1992年   20篇
  1991年   20篇
  1990年   19篇
  1989年   22篇
  1988年   17篇
  1987年   27篇
  1986年   21篇
  1985年   23篇
  1984年   28篇
  1983年   15篇
  1981年   14篇
  1980年   14篇
  1979年   15篇
  1978年   15篇
  1977年   28篇
  1976年   11篇
  1975年   9篇
  1974年   9篇
  1973年   8篇
  1969年   11篇
  1968年   14篇
  1966年   8篇
  1964年   8篇
排序方式: 共有2454条查询结果,搜索用时 15 毫秒
81.
Treatment of cancer patients with chemotherapeutics like cyclophosphamide often causes alopecia as a result of premature and aberrant catagen. Because the epidermal growth factor receptor (EGFR) signals anagen hair follicles to enter catagen, we hypothesized that EGFR signaling may be involved in cyclophosphamide-induced alopecia. To test this hypothesis, skin-targeted Egfr mutant mice were generated by crossing floxed Egfr and Keratin 14 promoter-driven Cre recombinase mice. Cyclophosphamide treatment of control mice resulted in alopecia while Egfr mutant skin was resistant to cyclophosphamide-induced alopecia. Egfr mutant skin entered catagen normally, as indicated by dermal papilla condensation and decreased follicular proliferation, but did not progress to telogen as did Egfr wild type follicles. Egfr mutant follicles responded with less proliferation, apoptosis, and fewer p53-positive cells after cyclophosphamide. Treatment of control mice with the EGFR inhibitors erlotinib or gefitinib similarly suppressed alopecia and catagen progression by cyclophosphamide. Secondary analysis of clinical trials utilizing EGFR-targeted therapies and alopecia-inducing chemotherapy also revealed evidence for involvement of EGFR in chemotherapy-induced alopecia. Taken together, our results demonstrated the involvement of EGFR signaling in chemotherapy-induced alopecia, which will help in the design of novel therapeutic regimens to minimize chemotherapy-induced alopecia.  相似文献   
82.
Intercellular adhesion molecule 1 (ICAM-1) is a membrane-bound glycoprotein expressed on endothelial cells and cells of the immune system. Human ICAM-1 mediates adhesion and migration of leucocytes, and is implicated in inflammatory pathologies, autoimmune diseases and in many cancer processes. Additionally, ICAM-1 acts as receptor for pathogens like human rhinovirus and Plasmodium falciparum malaria parasites. A group of related P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains, the DBLβ, mediates ICAM-1 binding of P. falciparum-infected erythrocytes. This ICAM‑1-binding phenotype has been suggested to be involved in the development of cerebral malaria. However, more studies identifying cross-reactive antibody and ICAM-1-binding epitopes and the establishment of a clinical link between DBLβ expression and e.g. cerebral malaria are needed before the DBLβ domains can be put forward as vaccine candidates and go into clinical trials. Such studies require availability of functional recombinant ICAM-1 in large quantities. In this study, we compared recombinant ICAM-1 expressed in HEK293 and COS-7 cells with mouse myeloma NS0 ICAM-1 purchased from a commercial vendor in terms of protein purity, yield, fold, ability to bind DBLβ, and relative cost. We present a HEK293 cell-based, high-yield expression and purification scheme for producing inexpensive, functional ICAM‑1. ICAM-1 expressed in HEK293 is applicable to malaria research and can also be useful in other research fields.  相似文献   
83.
84.
Biological Trace Element Research - While drugs and other industrial chemicals are routinely studied to assess risks, many widely used chemicals have not been thoroughly evaluated. One such...  相似文献   
85.

Biotically-mediated weathering helps to shape Earth’s surface. For example, plants expend carbon (C) to mobilize nutrients in forms whose relative abundances vary with depth. It thus is likely that trees’ nutrient acquisition strategies—their investment in rooting systems and exudates—may function differently following disturbance-induced changes in depth of rooting zones and soil nutrient stocks. These changes may persist across centuries. We test the hypothesis that plant C allocation for nutrient acquisition is depth dependent as a function of rooting system development and relative abundances of organic vs. mineral nutrient stocks. We further posit that patterns of belowground C allocation to nutrient acquisition reveal anthropogenic signatures through many decades of forest regeneration. To test this idea, we examined fine root abundances and rooting system C in organic acid exudates and exo-enzymes in tandem with depth distributions of organically- and mineral-bound P stocks. Our design permitted us to estimate C tradeoffs between organic vs. mineral nutrient benefits in paired forests with many similar aboveground traits but different ages: post-agricultural mixed-pine forests and older reference hardwoods. Fine roots were more abundant throughout the upper 2 m in reference forest soils than in regenerating stands. Rooting systems in all forests exhibited depth-dependent C allocations to nutrient acquisition reflecting relative abundances of organic vs. mineral bound P stocks. Further, organic vs. mineral stocks underwent redistribution with historic land use, producing distinct ecosystem nutritional economies. In reference forests, rooting systems are allocating C to relatively deep fine roots and low-C exudation strategies that can increase mobility of mineral-bound P stocks. Regenerating forests exhibit relatively shallower fine root distributions and more diverse exudation strategies reflecting more variable nutrient stocks. We observed these disparities in rooting systems’ depth and nutritional mechanisms even though the regenerating forests have attained aboveground biomass stocks similar to those in reference hardwood forests. These distinctions offer plausible belowground mechanisms for observations of continued C sink strength in relatively old forests, and have implications for soil C fates and soil development on timescales relevant to human lifetimes. As such, depth-dependent nutrient returns on plant C investments represent a subtle but consequential signal of the Anthropocene.

  相似文献   
86.
Origins of Life and Evolution of Biospheres - The numerous and varied roles of phosphorylated organic molecules in biochemistry suggest they may have been important to the origin of life. The...  相似文献   
87.
Cetacean physical maturity is defined by growth cessation and complete fusion of epiphyses to vertebral bodies indicated by invisible sutures. Many studies have shown epiphyseal fusion is highly variable among individuals. In-depth examinations into fusion variability are lacking. We analyzed vertebrae of 37 (n = 21 female, n = 16 male) stranded common bottlenose dolphins (Tursiops truncatus) from the well-studied Gulf of Mexico, Sarasota Bay community. For each specimen, vertebrae were examined by vertebral region for degree of fusion anteriorly and posteriorly of each centrum and categorized from unfused to fused in five degrees. An ordinal logistic regression was used to estimate degree of fusion probability for each epiphysis. The model had fixed effects for age, number of offspring, sex, sexual maturity, and a random effect for epiphysis. Results show that age/reproductive status significantly explains an individual's degree of fusion. Adult females with fewer calves had more fusion than those with more reproductive experience across multiple ages. Access to long-term observational and sample data on the dolphins residing in the area served by Mote Marine Laboratory's Stranding Investigations Program offers a unique opportunity to examine the relationship between energetic demands of reproduction (calcium production/reproductive output) versus preconceived definitions of physical maturity (skeletal fusion) more closely.  相似文献   
88.
The majority of batoids are listed as Threatened (20.4%) or Data Deficient (41%) by the IUCN Red List. A key challenge to assessing Data-Deficient species is obtaining estimates of key life-history characteristics. Here, a Bayesian approach was used to estimate derived life-history characteristics from a growth model applied to the Data-Deficient Brazilian electric ray Narcine brasiliensis. The age of 170 specimens (107 females, 63 males) was estimated from vertebral centra, and total length, disc width, total weight and birth size were used in a joint estimation of sex-specific length-weight models and two-dimensional von Bertalanffy growth models. Estimates of age at length zero, age at maturity, longevity and mortality at age were derived simultaneously. The Bayesian joint modelling approach was robust to small sample sizes by adding a likelihood to constrain L0 and sharing parameters, such as Brody growth coefficient between length measurements. The median growth parameter estimates were a shared L0 = 38.8 mm, female L = 515 mm, 𝑘 = 0.125 and male L = 387 mm, 𝑘 = 0.194. Age at maturity was estimated to be 7.40–7.49 years for females and 4.45–4.47 years for males, whereas longevity was 22.5–22.6 years for females and 14.2 years for males depending on length measurement. Age-1 natural mortality was estimated to be 0.199–0.207 for females and 0.211–0.213 for males. The derived life-history characteristics indicate N. brasiliensis is earlier maturing, but slower growing relative to other Torpediniformes. These characteristics along with the species’ endemism to southern Brazil and high by-catch rates indicate that one of the IUCN Red List threatened categories may be more appropriate for the currently Data-Deficient status. The Bayesian approach used for N. brasiliensis can prove useful for utilizing limited age-growth data in other Data-Deficient batoid species to inform necessary life characteristics for conservation and management.  相似文献   
89.
90.
Footrot (FR) is a common, contagious bacterial disease of sheep that results in lameness and significant economic losses for producers. We previously reported that sheep affected with FR have lower whole-blood (WB) selenium (Se) concentrations and that Se supplementation in conjunction with routine control practices accelerates recovery from FR. To determine whether oral Se-yeast administered at supranutritional levels (>4.9 mg Se/week) alters the ability of sheep to resist or recover from FR infection, 60 ewes with and 60 ewes without FR were drenched once weekly for 62.5 weeks with 0, 4.9, 14.7, or 24.5 mg organic Se-yeast (30 ewes per treatment group). Footrot prevalence and severity were measured at 0, 20, 28, 40, and 60 weeks of Se supplementation. Genomic expression of eight WB-neutrophil genes for selenoproteins and seven WB-neutrophil genes for proteins involved in innate immunity was determined at the end of the treatment period using SYBR Green and quantitative polymerase chain reaction methodology. Supranutritional Se-yeast supplementation successfully increased Se status in sheep but did not prevent FR. Supranutritional Se-yeast supplementation increased WB-neutrophil expression of genes involved in innate immunity: l-selectin, interleukin-8 receptor, and toll-like receptor 4, which were or tended to be lower in ewes affected with FR. Furthermore, supranutritional Se-yeast supplementation altered the expression of selenoprotein genes involved in innate immunity, increasing selenoprotein S and glutathione peroxidase 4 and decreasing iodothyronine deiodinases 2 and 3. In conclusion, supranutritional Se-yeast supplementation does not prevent FR, but does alter WB-neutrophil gene expression profiles associated with innate immunity, including reversing those impacted by FR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号