首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   34篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   10篇
  2020年   4篇
  2019年   9篇
  2018年   6篇
  2017年   13篇
  2016年   16篇
  2015年   12篇
  2014年   9篇
  2013年   11篇
  2012年   21篇
  2011年   9篇
  2010年   8篇
  2009年   6篇
  2008年   8篇
  2007年   3篇
  2006年   5篇
  2005年   3篇
  2004年   1篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1998年   1篇
  1997年   1篇
  1992年   3篇
  1991年   1篇
  1989年   4篇
  1987年   1篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   5篇
  1977年   2篇
  1976年   2篇
  1975年   7篇
  1973年   2篇
  1972年   1篇
  1970年   4篇
  1969年   1篇
排序方式: 共有215条查询结果,搜索用时 31 毫秒
51.
A psychrotrophic pseudomonad isolated from iced fish oxidized alanine at temperatures close to 0 degrees C and grew over the range 0 degrees C-35 degrees C. The rate of oxidation of alanine, measured manometrically, by cells grown at 2 degrees C was lower than that of cells grown at 22 degrees C. However, the consumption of oxygen after heat treatment at 35 degrees for 35 min was reduced considerably by 2 degrees C grown cells. Alanine oxidase activity was tested in an extract from cells grown at 2 degrees C and 22 degrees C with alanine as the sole carbon, nitrogen, and energy source. Cells grown at 2 degrees C produced an alanine oxidase with a temperature optimum of 35 degrees C and pH optimum of 8, which lost about 80% activity by heat treatment at 40 degrees C for 30 min. There was no change in activity after dialysis at pH 7, 8, or 9. Extracts from cells grown at 22 degrees C contained an alanine oxidase system with an optimum temperature of 45 degrees C, a pH optimum above 8, and only about 30% reduction of activity after heat treatment. This enzyme activity was concentrated in the 0.5 M elution fraction from a Sephadex column, and dialysis reduced the activity at pH 7 and 8. Mesophilic enzyme synthesis apparently started around a growth temperature of 10 degrees C. The crude alanine oxidase systems of Pseudomonas aeruginosa derived from cells grown at 13 degrees C and 37 degrees C had a common optimum temperature of 45 degrees C. These data suggest that one mechanism of psychrophilic growth by psychrotrophic bacteria may be the induction of enzymes with low optimum temperatures in response to low temperature conditions.  相似文献   
52.
Species worldwide have begun to shift their range boundaries in response to climate change and other anthropogenic causes, with population declines at the trailing edge of a species' range often foreshadowing future changes in core parts of the range. Therefore, we analyzed a 30-year (1991–2019) data set for the California spotted owl (Strix occidentalis occidentalis) near its southern range boundary in southern California, USA, that included the largest regional population (San Bernardino Mountains) to estimate trends in territory occupancy and reproduction. We then assessed how these demographic rates were affected by habitat, wildfire, fuel treatments, and climate. Mean occupancy declined from 0.82 to 0.39 during our study, whereas reproductive output showed no temporal trends ( young/occupied territory). Territory extinction (extirpation) rates were relatively low in territories with more large trees (≥50 cm dbh), and colonization increased strongly with large tree density for low-elevation territories within the shrub-woodland ecotype but not for higher-elevation territories within mixed-conifer forest. High-severity wildfire had an adverse effect on occupancy: territory extinction rates steadily increased with the amount of high-severity fire within an owl territory during the previous 10 years, while colonization declined to nearly zero when ≥40% of a territory burned at high-severity during the previous 10 years. The effects of high-severity fire were unlikely to be confounded with post-fire fuel treatments, which primarily consisted of the removal, burning, or scattering of brush and small trees and snags (<40.6 cm dbh) and affected much smaller areas than high-severity fire. Of the 40 territories that received fuel treatments within 10 years of a fire, only 3 of them had post-fire fuel treatments that affected >5% of the territory, whereas average area burned at high severity for all 40 territories was 17%. Fuel treatments intended to modify fire behavior and reduce the likelihood of large, high-severity fires led to increases in territory extinction and colonization such that their net effect on occupancy was minimal. Our simulations of occupancy dynamics indicated that high-severity fire accounted for 9.6% of the observed decline in occupancy, whereas fuel treatments effectively accounted for none of the decline. Spotted owl reproductive output was lower at territories where fuel treatments occurred, but low- to moderate-severity fire resulted in much larger, population-level reductions in reproductive output (141 fewer young) from 2006–2019 than treatments (19 fewer young). Thus, the benefits of fuel treatments that reduce fire occurrence and severity appear to outweigh potential short-term costs to spotted owls and their habitat. Because high-severity fire only explained a modest amount of the long-term occupancy decline and much of the decline occurred in the 1990s before large fires occurred, additional factors are likely adversely affecting the owl population and merit further study. Nevertheless, the large observed population decline, limited evidence of owl dispersal among mountain ranges in the southern California metapopulation, and negative effects of increasingly large and severe fire suggest that California spotted owls at their southern range boundary are vulnerable to extirpation. In an era of climate change, owls in the core part of the range will likely become increasingly susceptible to warmer temperatures and increased severe fire activity in the future. Thus, the restoration of historical, low-severity fire regimes through fuels management while maintaining large trees is important to improving owl persistence.  相似文献   
53.
54.
55.
The identification of population bottlenecks is critical in conservation because populations that have experienced significant reductions in abundance are subject to a variety of genetic and demographic processes that can hasten extinction. Genetic bottleneck tests constitute an appealing and popular approach for determining if a population decline has occurred because they only require sampling at a single point in time, yet reflect demographic history over multiple generations. However, a review of the published literature indicates that, as typically applied, microsatellite-based bottleneck tests often do not detect bottlenecks in vertebrate populations known to have experienced declines. This observation was supported by simulations that revealed that bottleneck tests can have limited statistical power to detect bottlenecks largely as a result of limited sample sizes typically used in published studies. Moreover, commonly assumed values for mutation model parameters do not appear to encompass variation in microsatellite evolution observed in vertebrates and, on average, the proportion of multi-step mutations is underestimated by a factor of approximately two. As a result, bottleneck tests can have a higher probability of 'detecting' bottlenecks in stable populations than expected based on the nominal significance level. We provide recommendations that could add rigor to inferences drawn from future bottleneck tests and highlight new directions for the characterization of demographic history.  相似文献   
56.
Gompert Z 《Molecular ecology》2012,21(7):1542-1544
Admixture and introgression have varied effects on population viability and fitness. Admixture might be an important source of new alleles, particularly for small, geographically isolated populations. However, admixture might also cause outbreeding depression if populations are adapted to different ecological or climatic conditions. Because of the emerging use of translocation and admixture as a conservation and wildlife management strategy to reduce genetic load (termed genetic rescue), the possible effects of admixture have practical consequences ( Bouzat et al. 2009 ; Hedrick & Fredrickson 2010 ). Importantly, genetic load and local adaptation are properties of individual loci and epistatic interactions among loci rather than properties of genomes. Likewise, the outcome and consequences of genetic rescue depend on the fitness effects of individual introduced alleles. In this issue of Molecular Ecology, Miller et al. (2012) use model‐based, population genomic analyses to document locus‐specific effects of a recent genetic rescue in the bighorn sheep population within the National Bison Range wildlife refuge (NBR; Montana, USA). They find a subset of introduced alleles associated with increased fitness in NBR bighorn sheep, some of which experienced accelerated introgression following their introduction. These loci mark regions of the genome that could constitute the genetic basis of the successful NBR bighorn sheep genetic rescue. Although population genomic analyses are frequently used to study local adaptation and selection (e.g. Hohenlohe et al. 2010 ; Lawniczak et al. 2010 ), this study constitutes a novel application of this analytical framework for wildlife management. Moreover, the detailed demographic data available for the NBR bighorn sheep population provide a rare and powerful source of information and allow more robust population genomic inference than is often possible.  相似文献   
57.
58.
Persistence of biological control agents against mosquito larvae was tested under simulated field conditions. Mosquito larvicidal activity of transgenic Anabaena PCC 7120 expressing cry4Aa, cry11Aa and p20 from Bacillus thuringiensis ssp. israelensis was greater than B. thuringiensis ssp. israelensis primary powder (fun 89C06D) or wettable powder (WP) (Bactimos products) when either mixed with silt or exposed to sunlight outdoors. Reduction of Bactimos primary powder toxicity was at least 10-fold higher than Anabaena's after mixing with silt. In outdoors experiments, Bactimos WP remained toxic (over 30% mortality of 3rd instar Aedes aegypti larvae) for 2-4 days only, while transgenic Anabaena's toxicity endured 8-21 days.  相似文献   
59.
X-linked ectodermal dysplasia receptor (XEDAR) is a recently isolated member of the tumor necrosis factor receptor family that has been shown to be highly expressed in ectodermal derivatives during embryonic development and binds to ectodysplasin-A2 (EDA-A2). By using a subclone of 293F cells with stable expression of XEDAR, we report that XEDAR activates the NF-kappaB and JNK pathways in an EDA-A2-dependent fashion. Treatment with EDA-A2 leads to the recruitment of TRAF3 and -6 to the aggregated XEDAR complex, suggesting a central role of these adaptors in the proximal aspect of XEDAR signaling. Whereas TRAF3 and -6, IKK1/IKKalpha, IKK2/IKKbeta, and NEMO/IKKgamma are involved in XEDAR-induced NF-kappaB activation, XEDAR-induced JNK activation seems to be mediated via a pathway dependent on TRAF3, TRAF6, and ASK1. Deletion and point mutagenesis studies delineate two distinct regions in the cytoplasmic domain of XEDAR, which are involved in binding to TRAF3 and -6, respectively, and play a major role in the activation of the NF-kappaB and JNK pathways. Taken together, our results establish a major role of TRAF3 and -6 in XEDAR signaling and in the process of ectodermal differentiation.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号