首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   10篇
  112篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2015年   4篇
  2014年   4篇
  2013年   7篇
  2012年   10篇
  2011年   4篇
  2010年   3篇
  2009年   5篇
  2008年   8篇
  2007年   4篇
  2006年   7篇
  2005年   5篇
  2004年   10篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   3篇
  1978年   1篇
  1975年   1篇
  1974年   3篇
  1971年   2篇
  1968年   1篇
排序方式: 共有112条查询结果,搜索用时 10 毫秒
11.
Sediments from a high-level nuclear waste plume were collected as part of investigations to evaluate the potential fate and migration of contaminants in the subsurface. The plume originated from a leak that occurred in 1962 from a waste tank consisting of high concentrations of alkali, nitrate, aluminate, Cr(VI), (137)Cs, and (99)Tc. Investigations were initiated to determine the distribution of viable microorganisms in the vadose sediment samples, probe the phylogeny of cultivated and uncultivated members, and evaluate the ability of the cultivated organisms to survive acute doses of ionizing radiation. The populations of viable aerobic heterotrophic bacteria were generally low, from below detection to approximately 10(4) CFU g(-1), but viable microorganisms were recovered from 11 of 16 samples, including several of the most radioactive ones (e.g., >10 microCi of (137)Cs/g). The isolates from the contaminated sediments and clone libraries from sediment DNA extracts were dominated by members related to known gram-positive bacteria. Gram-positive bacteria most closely related to Arthrobacter species were the most common isolates among all samples, but other phyla high in G+C content were also represented, including Rhodococcus and Nocardia. Two isolates from the second-most radioactive sample (>20 microCi of (137)Cs g(-1)) were closely related to Deinococcus radiodurans and were able to survive acute doses of ionizing radiation approaching 20 kGy. Many of the gram-positive isolates were resistant to lower levels of gamma radiation. These results demonstrate that gram-positive bacteria, predominantly from phyla high in G+C content, are indigenous to Hanford vadose sediments and that some are effective at surviving the extreme physical and chemical stress associated with radioactive waste.  相似文献   
12.
Adipose stem and precursor cells (ASPCs) give rise to adipocytes and determine the composition and plasticity of adipose tissue. Recently, several studies have demonstrated that ASPCs partition into at least three distinct cell subpopulations, including the enigmatic CD142+ cells. An outstanding challenge is to functionally characterise this population, as discrepant properties, from adipogenic to non‐ and anti‐adipogenic, have been reported for these cells. To resolve these phenotypic ambiguities, we characterised mammalian subcutaneous CD142+ ASPCs across various experimental conditions, demonstrating that CD142+ ASPCs exhibit high molecular and phenotypic robustness. Specifically, we find these cells to be firmly non‐ and anti‐adipogenic both in vitro and in vivo, with their inhibitory signals also impacting adipogenic human cells. However, these CD142+ ASPC‐specific properties exhibit surprising temporal phenotypic alterations, and emerge only in an age‐dependent manner. Finally, using multi‐omic and functional assays, we show that the inhibitory nature of these adipogenesis‐regulatory CD142+ ASPCs (Aregs) is driven by specifically expressed secretory factors that cooperate with the retinoic acid signalling pathway to transform the adipogenic state of CD142 ASPCs into a non‐adipogenic, Areg‐like state.  相似文献   
13.
The dietary microelement selenium (Se) has been proposed as a potential chemopreventive agent for prostate cancer. This element is present in various amounts in all tissues. Little information is available on Se level in patients with prostate gland disorders. The levels of Se in prostatic gland of patients with prostate cancer, benign prostate hyperplasia, and healthy controls were examined. The Se level for benign prostate hyperplasia (156±30.6 ng/g) was the same as in the control group (157±26.0 ng/g), but in the gland of prostate cancer patients (182±34.1 ng/g wet weight), the Se level was significantly (p<0.01) higher than in both healthy controls and benign prostate hyperplasia. Thus, the Se level in human healthy controls is lower than in kidney and liver but higher compared with other tissues.  相似文献   
14.
Myriad nuclear and cytoplasmic proteins in metazoans are modified on Ser and Thr residues by the monosaccharide O-linked beta-N-acetylglucosamine (O-GlcNAc). The rapid and dynamic change in O-GlcNAc levels in response to extracellular stimuli, morphogens, the cell cycle and development suggests a key role for O-GlcNAc in signal transduction pathways. Modulation of O-GlcNAc levels has profound effects on the functioning of cells, in part mediated through a complex interplay between O-GlcNAc and O-phosphate. In many well-studied proteins, the O-GlcNAc modification and phosphorylation are reciprocal. That is, they occur on different subsets of the protein population, as the site of attachment occurs on the same or adjacent Ser/Thr residues. Recently, O-GlcNAc has been implicated in the etiology of type II diabetes, the regulation of stress response pathways, and in the regulation of the proteasome.  相似文献   
15.
16.
Temperate and boreal forests undergo drastic functional changes in the springtime, shifting within a few weeks from net carbon (C) sources to net C sinks. Most of these changes are mediated by temperature. The autumn 2006–winter 2007 record warm period was followed by an exceptionally warm spring in Europe, making spring 2007 a good candidate for advances in the onset of the photosynthetically active period. An analysis of a decade of eddy covariance data from six European forests stands, which encompass a wide range of functional types (broadleaf evergreen, broadleaf deciduous, needleleaf evergreen) and a wide latitudinal band (from 44° to 62°N), revealed exceptional fluxes during spring 2007. Gross primary productivity (GPP) of spring 2007 was the maximum recorded in the decade examined for all sites but a Mediterranean evergreen forest (with a +40 to +130 gC m?2 anomaly compared with the decadal mean over the January–May period). Total ecosystem respiration (TER) was also promoted during spring 2007, though less anomalous than GPP (with a +17 to +93 gC m?2 anomaly over 5 months), leading to higher net uptake than the long‐term mean at all sites (+12 to +79 gC m?2 anomaly over 5 months). A correlative analysis relating springtime C fluxes to simple phenological indices suggested spring C uptake and temperatures to be related. The CASTANEA process‐based model was used to disentangle the seasonality of climatic drivers (incoming radiation, air and soil temperatures) and biological drivers (canopy dynamics, thermal acclimation of photosynthesis to low temperatures) on spring C fluxes along the latitudinal gradient. A sensitivity analysis of model simulations evidenced the roles of (i) an exceptional early budburst combined with elevated air temperature in deciduous sites, and (ii) an early relief of winter thermal acclimation in coniferous sites for the promotion of 2007 spring assimilation.  相似文献   
17.
Patients with chronic renal failure (CRF) usually have a lower than healthy level of selenium (Se) in whole blood and plasma. Plasma glutathione peroxidase (GSH-Px) is synthesized mostly in the kidney. In CRF patients, activity of this enzyme is significantly reduced and its reduction increases with the progress of the disease. The aim of the study was to evaluate the effect of Se supplementation to CRF patients at various stages of the disease on Se concentration in blood components and on plasma GSH-Px activity. The study group comprised 53 CRF patients at various stages of the disease supplemented with Se (200 μg/d for 3 mo as Se-enriched yeast, containing about 70% l-selenomethionine [SeMet]). The control group consisted of 20 healthy subjects. The Se concentration in blood components was measured spectrofluorometrically with 2,3-diaminonaphthalene as a complexing reagent. GSH-Px activity in red cell hemolysates and plasma was assayed by the coupled method with tert-butyl hydroperoxide as a substrate. The Se concentration in whole blood and plasma of CRF patients is significantly lower as compared with healthy subjects, but similar at all stages of the disease. In the patients’ plasma, total protein and albumin levels are also significantly lower than in healthy subjects. Plasma GSH-Px activity in patients is extremely low, and contrary to Se concentration, it decreases linearly with the increasing stage of the illness. Se-supplied patients show an increased Se concentration in all blood components and at all disease stages, whereas plasma GSH-Px activity is enhanced only at the incipient stage of the disease. Se supply has no effect on plasma GSH-Px activity in uremic patients at the end stage of the disease. Total plasma protein and albumin levels did not change after Se supplementation. Our data seem to show that in patients with CRF lower total protein and albumin levels in plasma may be the chief cause of the low blood and plasma Se concentrations. GSH-Px activity decreases along with the kidney impairment. At the end stage of the disease, Se supplementation in the form of Se-enriched yeast has no effect on the increase in plasma GSH-Px activity.  相似文献   
18.
The interplay between microorganisms and minerals is a complex and dynamic process that has sculpted the geosphere for nearly the entire history of the Earth. The work of Dr Terry Beveridge and colleagues provided some of the first insights into metal-microbe and mineral-microbe interactions and established a foundation for subsequent detailed investigations of interactions between microorganisms and minerals. Beveridge also envisioned that interdisciplinary approaches and teams would be required to explain how individual microbial cells interact with their immediate environment at nano- or microscopic scales and that through such approaches and using emerging technologies that the details of such interactions would be revealed at the molecular level. With this vision as incentive and inspiration, a multidisciplinary, collaborative team-based investigation was initiated to probe the process of electron transfer (ET) at the microbe-mineral interface. The grand challenge to this team was to address the hypothesis that multiheme c-type cytochromes of dissimilatory metal-reducing bacteria localized to the cell exterior function as the terminal reductases in ET to Fe(III) and Mn(IV) oxides. This question has been the subject of extensive investigation for years, yet the answer has remained elusive. The team involves an integrated group of experimental and computational capabilities at US Department of Energy's Environmental Molecular Sciences Laboratory, a national scientific user facility, as the collaborative focal point. The approach involves a combination of in vitro and in vivo biologic and biogeochemical experiments and computational analyses that, when integrated, provide a conceptual model of the ET process. The resulting conceptual model will be evaluated by integrating and comparing various experimental, i.e. in vitro and in vivo ET kinetics, and theoretical results. Collectively, the grand challenge will provide a detailed view of how organisms engage with mineral surfaces to exchange energy and electron density as required for life function.  相似文献   
19.
In patients with chronic renal failure (CRF) Se concentration in blood components is usually lower as compared with healthy controls. One of the five known forms of Se-dependent glutathione peroxidases (GSH-Px), the plasma GSH-Px, is synthesized primarily in the kidney. In CRF patients, plasma GSH-Px activity is reduced and the reduction increases with the progress of the disease.

The Se concentration in blood components was measured spectrofluorometrically with 2,3-diaminonaphthalene as complexing reagent. Activities of GSH-Px in red cells and in plasma were assayed by the coupled method with t-butyl hydroperoxide as substrate. The study group consisted of 150 patients in different stages of CRF. The results were compared with the values for 30 healthy subjects.

Se concentrations in whole blood and plasma of the entire group of patients were significantly lower (p < 0.01) as compared with the healthy subjects. In the incipient stage, however, the Se levels in all blood components were non-significantly lower. In whole blood and plasma the Se levels gradually decreased, reaching in the end stage values that were lower by 29 to 32% (p < 0.0001) as compared with the control group. Total protein and albumin levels in plasma of patients were significantly lower (p < 0.0001) as compared with healthy subjects and they decreased linearly with the progress of the disease. Positive and highly significant correlations were noted between total plasma protein and plasma Se concentrations (p < 0.0001) as well as between plasma albumin and plasma Se concentrations (p < 0.0001).

Red cell GSH-Px activity in the entire group of patients was lower (p < 0.05) than in the control group and did not change significantly with the progress of the disease. In plasma, however, GSH-Px activity of the entire group was lower by 33% (p < 0.0001) as compared with healthy subjects and decreased gradually with increasing renal failure. Highly significant, inverse correlations were seen between creatinine levels and plasma GSH-Px activities (p < 0.0001) as well as between urea nitrogen levels and plasma GSH-Px activities (p < 0.0001) when all stages of the disease were included.

In conclusion, patients with CRF exhibit lower Se levels in blood components as compared with healthy subjects. In whole blood and plasma these levels decrease with the progress of the disease. Plasma GSH-Px activity in patients was extremely reduced and it dramatically decreased with the progress of the illness.  相似文献   

20.
Many species of the bacterial Shewanella genus are notable for their ability to respire in anoxic environments utilizing insoluble minerals of Fe(III) and Mn(IV) as extracellular electron acceptors. In Shewanella oneidensis, the process is dependent on the decahaem electron-transport proteins that lie at the extracellular face of the outer membrane where they can contact the insoluble mineral substrates. These extracellular proteins are charged with electrons provided by an inter-membrane electron-transfer pathway that links the extracellular face of the outer membrane with the inner cytoplasmic membrane and thereby intracellular electron sources. In the present paper, we consider the common structural features of two of these outer-membrane decahaem cytochromes, MtrC and MtrF, and bring this together with biochemical, spectroscopic and voltammetric data to identify common and distinct properties of these prototypical members of different clades of the outer-membrane decahaem cytochrome superfamily.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号