首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33969篇
  免费   3472篇
  国内免费   8466篇
  2024年   197篇
  2023年   654篇
  2022年   1383篇
  2021年   1922篇
  2020年   1560篇
  2019年   1797篇
  2018年   1556篇
  2017年   1223篇
  2016年   1561篇
  2015年   2147篇
  2014年   2665篇
  2013年   2682篇
  2012年   3330篇
  2011年   2993篇
  2010年   2086篇
  2009年   1965篇
  2008年   2192篇
  2007年   2021篇
  2006年   1780篇
  2005年   1575篇
  2004年   1264篇
  2003年   1134篇
  2002年   1000篇
  2001年   930篇
  2000年   760篇
  1999年   622篇
  1998年   347篇
  1997年   327篇
  1996年   298篇
  1995年   297篇
  1994年   253篇
  1993年   166篇
  1992年   232篇
  1991年   167篇
  1990年   143篇
  1989年   125篇
  1988年   93篇
  1987年   115篇
  1986年   74篇
  1985年   75篇
  1984年   56篇
  1983年   39篇
  1982年   53篇
  1981年   26篇
  1980年   8篇
  1979年   7篇
  1975年   1篇
  1964年   1篇
  1950年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.

Background and aims

The relationship between tree species and soil nutrient availability is critical for evaluating plantation succession and promoting forest restoration. This study was conducted to evaluate the impact of exotic and native tress species on soil nutrient availability.

Methods

Four exotic species (Eucalyptus urophylla, E. tereticornis, Acaia auriculaeformis, A. mangium) and four native species (Castanopsis fissa, Schima superba, C. hystrix, Michelia macclurei) were planted and grown for one-year. Soil solution (DOC, DON, NH4?N, NO3?N) was sampled and analyzed during the study. After the experiment, soil properties were determined, and plant tissues were analyzed.

Results

DOC levels were greater in soils with trees planted than controls without trees. Compared to native species, exotic species had much faster growth rates and greatly reduced DON and NO3?N concentrations. Exotic species always had less P concentrations in leaves and stems than native species. Furthermore, N-fixing A. auriculaeformis led to greater soil available P compared to other species.

Conclusions

Based on these findings, we provide some recommendations for afforestation practice. This study highlights that a better understanding of the pros and cons of exotic species would be beneficial to advance afforestation in China and the world.  相似文献   
952.
953.
954.
As protoplasts have the characteristics of no cell walls, rapid population growth, and synchronicity, they are useful tools for research in many fields, especially cellular biology (Table 1). This article is an overview that focuses on the application of protoplasts to investigate the mechanisms of dedifferentiation, including changes in hormone signals, epigenetic changes, and organelle distribution during the dedifferentiation process. The article also emphasizes the wide range of uses for protoplasts in studying protein positions and signaling during different stresses. The examples provided help to show that protoplast systems, for example the mesophyll protoplast system of Arabidopsis, represent promising tools for studying developmental biology. Meanwhile, specific analysis of protoplast, which comes from different tissue, has specific advantages and limitations (Table 2), and it can provide recommendations to use this system.  相似文献   
955.
Phosphatidylinositol (PtdIns) synthase is a key enzyme in the phospholipid pathway and catalyses the formation of PtdIns. PtdIns is not only a structural component of cell membranes, but also the precursor of the phospholipid signal molecules that regulate plant response to environment stresses. Here, we obtained transgenic maize constitutively overexpressing or underexpressing PIS from maize (ZmPIS) under the control of a maize ubiquitin promoter. Transgenic plants were confirmed by PCR, Southern blotting analysis and real‐time RT‐PCR assay. The electrospray ionization tandem mass spectrometry (ESI‐MS/MS)‐based lipid profiling analysis showed that, under drought stress conditions, the overexpression of ZmPIS in maize resulted in significantly elevated levels of most phospholipids and galactolipids in leaves compared with those in wild type (WT). At the same time, the expression of some genes involved in the phospholipid metabolism pathway and the abscisic acid (ABA) biosynthesis pathway including ZmPLC, ZmPLD, ZmDGK1, ZmDGK3, ZmPIP5K9, ZmABA1, ZmNCED, ZmAAO1, ZmAAO2 and ZmSCA1 was markedly up‐regulated in the overexpression lines after drought stress. Consistent with these results, the drought stress tolerance of the ZmPIS sense transgenic plants was enhanced significantly at the pre‐flowering stages compared with WT maize plants. These results imply that ZmPIS regulates the plant response to drought stress through altering membrane lipid composition and increasing ABA synthesis in maize.  相似文献   
956.
B lymphocyte stimulator (BLyS) antagonists are new therapeutic reagents for treating the autoimmune diseases. Peptibodies can inhibit the bioactivity of BLyS, the same as other BLyS antagonists: decoyed BLyS receptors and anti-BLyS antibodies. In this study, a new optimized BLyS antagonist peptide was designed according to our previous work by the computer-aided homology modeling. Competitive ELISA showed that the peptide at 100 μg/ml could inhibit 54 % of the BCMA-Fc binding to BLyS. To maintain its stability and spatial conformation, the peptide was fused to human IgG1 Fc to form a peptide-Fc fusion protein—a novel peptibody by gene engineering. ELISA indicated that the peptibody could bind with BLyS in dosage-dependent manner as BCMA-Fc did. This study highlights the possibility of designing and optimizing BLyS antagonist peptides with high biopotency by the computer-aided design. Thus, these peptides could neutralize BLyS activity and be potential antagonists to treat autoimmune diseases related with BLyS overexpression.  相似文献   
957.
Ramoplanins produced by Actinoplanes are new structural class of lipopeptide and are currently in phase III clinical trials for the prevention of vancomycin-resistant enterococcal infections. The depsipeptide structures of ramoplanins are synthesized by non-ribosomal peptide synthetases (NRPS). Romo-orf17, a stand-alone NRPS, is responsible for the recruitment of Thr into the linear NRPS pathways for which the corresponding adenylation domain is absent. Here, systematical gene inactivation and complementation have been carried out in a Actinoplanes sp. using homologous recombination and site-specific integration methods. A hybrid gene coding for the N-terminal region of the stand-alone NRPS and the A-PCP domains of a heterologous NRPS restored production of ramoplanins. The results elucidate the unusual N-terminal region which is essential for the biosynthesis of ramoplanins.  相似文献   
958.
The arbuscular mycorrhizal fungi (AMF) enhance the resistance to pathogen infection in host plant. However, it is unclear how the AMF are involved in the systemic acquired resistance of host plant against pathogen. Here, an experiment was carried out to clarify the role of the AMF in soybean’s defense against the infection from pathogen Phytophthora sojae. It was found that the AMF contributed to the resistance of soybean against Phytophthora sojae by the release of hydrogen peroxide and by the accumulation of jasmonic acid in response to pathogenic invasion. Furthermore, the trade of nitrogen (N) from the fungus for carbon from the host was accelerated in the AM symbiosis in the defense reaction, which was indicated by the increased soluble sugar level, NO content and enzyme activities involved in N metabolism in the AM symbiosis.  相似文献   
959.
960.
Coniothyrium minitans is a sclerotial parasite of the plant-pathogenic fungus Sclerotinia sclerotiorum, and conidial production and parasitism are two important aspects for commercialization of this biological control agent. To understand the mechanism of conidiation and parasitism at the molecular level, we constructed a transfer DNA (tDNA) insertional library with the wild-type strain ZS-1. A conidiation-deficient mutant, ZS-1TN22803, was uncovered through screening of this library. This mutant could produce pycnidia on potato dextrose agar (PDA), but most were immature and did not bear conidia. Moreover, this mutant lost the ability to parasitize or rot the sclerotia of S. sclerotiorum. Analysis of the tDNA flanking sequences revealed that a peroxisome biogenesis factor 6 (PEX6) homolog of Saccharomyces cerevisiae, named CmPEX6, was disrupted by the tDNA insertion in this mutant. Targeted gene replacement and gene complementation tests confirmed that a null mutation of CmPEX6 was responsible for the phenotype of ZS-1TN22803. Further analysis showed that both ZS-1TN22803 and the targeted replacement mutants could not grow on PDA medium containing oleic acid, and they produced much less nitric oxide (NO) and hydrogen peroxide (H2O2) than wild-type strain ZS-1. The conidiation of ZS-1TN22803 was partially restored by adding acetyl-CoA or glyoxylic acid to the growth media. Our results suggest that fatty acid β-oxidation, reactive oxygen and nitrogen species, and possibly other unknown pathways in peroxisomes are involved in conidiation and parasitism by C. minitans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号