首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4316篇
  免费   354篇
  2023年   14篇
  2022年   33篇
  2021年   64篇
  2020年   33篇
  2019年   54篇
  2018年   67篇
  2017年   63篇
  2016年   88篇
  2015年   184篇
  2014年   163篇
  2013年   245篇
  2012年   314篇
  2011年   299篇
  2010年   213篇
  2009年   175篇
  2008年   291篇
  2007年   290篇
  2006年   256篇
  2005年   229篇
  2004年   253篇
  2003年   273篇
  2002年   245篇
  2001年   49篇
  2000年   39篇
  1999年   53篇
  1998年   77篇
  1997年   43篇
  1996年   51篇
  1995年   44篇
  1994年   52篇
  1993年   42篇
  1992年   30篇
  1991年   26篇
  1990年   18篇
  1989年   18篇
  1988年   24篇
  1987年   20篇
  1986年   13篇
  1985年   21篇
  1984年   24篇
  1983年   14篇
  1982年   30篇
  1981年   23篇
  1980年   21篇
  1979年   12篇
  1978年   13篇
  1977年   11篇
  1976年   7篇
  1974年   9篇
  1973年   8篇
排序方式: 共有4670条查询结果,搜索用时 31 毫秒
131.
Cell capacity for cytosolic NADPH regeneration by NADP‐dehydrogenases was investigated in the leaves of two hybrid poplar (Populus deltoides × Populus nigra) genotypes in response to ozone (O3) treatment (120 ppb for 17 days). Two genotypes with differential O3 sensitivity were selected, based on visual symptoms and fallen leaves: Robusta (sensitive) and Carpaccio (tolerant). The estimated O3 flux (POD0), that entered the leaves, was similar for the two genotypes throughout the treatment. In response to that foliar O3 flux, CO2 assimilation was inhibited to the same extent for the two genotypes, which could be explained by a decrease in Rubisco (EC 4.1.1.39) activity. Conversely, an increase in PEPC (EC 4.1.1.31) activity was observed, together with the activation of certain cytosolic NADP‐dehydrogenases above their constitutive level, i.e. NADP‐G6PDH (EC 1.1.1.49), NADP‐ME (malic enzyme) (EC 1.1.1.40) and NADP‐ICDH (NADP‐isocitrate dehydrogenase) (EC1.1.1.42). However, the activity of non‐phosphorylating NADP‐GAPDH (EC 1.2.1.9) remained unchanged. From the 11th fumigation day, NADP‐G6PDH and NADP‐ME profiles made it possible to differentiate between the two genotypes, with a higher activity in Carpaccio than in Robusta. At the same time, Carpaccio was able to maintain high levels of NADPH in the cells, while NADPH levels decreased in Robusta O3‐treated leaves. All these results support the hypothesis that the capacity for cells to regenerate the reducing power, especially the cytosolic NADPH pool, contributes to improve tolerance to high ozone exposure.  相似文献   
132.
133.
134.
135.
136.
Surfactin, a bacterial amphiphilic lipopeptide is attracting more and more attention in view of its bioactive properties which are in relation with its ability to interact with lipids of biological membranes. In this work, we investigated the effect of surfactin on membrane structure using model of membranes, vesicles as well as supported bilayers, presenting coexistence of fluid-disordered (DOPC) and gel (DPPC) phases. A range of complementary methods was used including AFM, ellipsometry, dynamic light scattering, fluorescence measurements of Laurdan, DPH, calcein release, and octadecylrhodamine B dequenching. Our findings demonstrated that surfactin concentration is critical for its effect on the membrane. The results suggest that the presence of rigid domains can play an essential role in the first step of surfactin insertion and that surfactin interacts both with the membrane polar heads and the acyl chain region. A mechanism for the surfactin lipid membrane interaction, consisting of three sequential structural and morphological changes, is proposed. At concentrations below the CMC, surfactin inserted at the boundary between gel and fluid lipid domains, inhibited phase separation and stiffened the bilayer without global morphological change of liposomes. At concentrations close to CMC, surfactin solubilized the fluid phospholipid phase and increased order in the remainder of the lipid bilayer. At higher surfactin concentrations, both the fluid and the rigid bilayer structures were dissolved into mixed micelles and other structures presenting a wide size distribution.  相似文献   
137.
Short stature, hyperextensibility of joints and/or inguinal hernia, ocular depression, Rieger anomaly, and teething delay (SHORT) syndrome is a developmental disorder with an unknown genetic cause and hallmarks that include insulin resistance and lack of subcutaneous fat. We ascertained two unrelated individuals with SHORT syndrome, hypothesized that the observed phenotype was most likely due to de novo mutations in the same gene, and performed whole-exome sequencing in the two probands and their unaffected parents. We then confirmed our initial observations in four other subjects with SHORT syndrome from three families, as well as 14 unrelated subjects presenting with syndromic insulin resistance and/or generalized lipoatrophy associated with dysmorphic features and growth retardation. Overall, we identified in nine affected individuals from eight families de novo or inherited PIK3R1 mutations, including a mutational hotspot (c.1945C>T [p.Arg649Trp]) present in four families. PIK3R1 encodes the p85α, p55α, and p50α regulatory subunits of class IA phosphatidylinositol 3 kinases (PI3Ks), which are known to play a key role in insulin signaling. Functional data from fibroblasts derived from individuals with PIK3R1 mutations showed severe insulin resistance for both proximal and distal PI3K-dependent signaling. Our findings extend the genetic causes of severe insulin-resistance syndromes and provide important information with respect to the function of PIK3R1 in normal development and its role in human diseases, including growth delay, Rieger anomaly and other ocular affections, insulin resistance, diabetes, paucity of fat, and ovarian cysts.  相似文献   
138.
139.
Trimeric autotransporter adhesins (TAAs) are bacterial surface proteins that fulfil important functions in pathogenic Gram‐negative bacteria. Prominent examples of TAAs are found in Burkholderia cepacia complex, a group of bacterial species causing severe infections in patients with cystic fibrosis. While there is strong evidence that Burkholderia cenocepacia TAAs mediate adhesion, aggregation and colonization of the respiratory epithelium, we still know very little about the molecular mechanisms behind these interactions. Here, we use single‐molecule atomic force microscopy to unravel the binding mechanism of BCAM0224, a prototype TAA from B. cenocepacia K56‐2. We show that the adhesin forms homophilic trans‐interactions engaged in bacterial aggregation, and that it behaves as a spring capable to withstand high forces. We also find that BCAM0224 binds collagen, a major extracellular component of host epithelia. Both homophilic and heterophilic interactions display low binding affinity, which could be important for epithelium colonization. We then demonstrate that BCAM0224 recognizes receptors on living pneumocytes, and leads to the formation of membrane tethers that may play a role in promoting adhesion. Collectively, our results show that BCAM0224 is a multifunctional adhesin endowed with remarkable binding properties, which may represent a general mechanism among TAAs for strengthening bacterial adhesion.  相似文献   
140.
Nucleo-cytoplasmic large DNA viruses (NCLDVs) constitute a group of eukaryotic viruses that can have crucial ecological roles in the sea by accelerating the turnover of their unicellular hosts or by causing diseases in animals. To better characterize the diversity, abundance and biogeography of marine NCLDVs, we analyzed 17 metagenomes derived from microbial samples (0.2–1.6 μm size range) collected during the Tara Oceans Expedition. The sample set includes ecosystems under-represented in previous studies, such as the Arabian Sea oxygen minimum zone (OMZ) and Indian Ocean lagoons. By combining computationally derived relative abundance and direct prokaryote cell counts, the abundance of NCLDVs was found to be in the order of 104–105 genomes ml−1 for the samples from the photic zone and 102–103 genomes ml−1 for the OMZ. The Megaviridae and Phycodnaviridae dominated the NCLDV populations in the metagenomes, although most of the reads classified in these families showed large divergence from known viral genomes. Our taxon co-occurrence analysis revealed a potential association between viruses of the Megaviridae family and eukaryotes related to oomycetes. In support of this predicted association, we identified six cases of lateral gene transfer between Megaviridae and oomycetes. Our results suggest that marine NCLDVs probably outnumber eukaryotic organisms in the photic layer (per given water mass) and that metagenomic sequence analyses promise to shed new light on the biodiversity of marine viruses and their interactions with potential hosts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号