首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1941篇
  免费   123篇
  国内免费   1篇
  2065篇
  2022年   20篇
  2021年   19篇
  2020年   13篇
  2019年   13篇
  2018年   29篇
  2017年   20篇
  2016年   30篇
  2015年   37篇
  2014年   69篇
  2013年   102篇
  2012年   103篇
  2011年   106篇
  2010年   64篇
  2009年   56篇
  2008年   96篇
  2007年   106篇
  2006年   89篇
  2005年   94篇
  2004年   113篇
  2003年   118篇
  2002年   87篇
  2001年   47篇
  2000年   53篇
  1999年   49篇
  1998年   23篇
  1997年   22篇
  1996年   16篇
  1995年   21篇
  1994年   19篇
  1993年   18篇
  1992年   28篇
  1991年   26篇
  1990年   26篇
  1989年   30篇
  1988年   30篇
  1987年   28篇
  1986年   13篇
  1985年   26篇
  1984年   21篇
  1983年   19篇
  1982年   18篇
  1980年   12篇
  1979年   26篇
  1978年   19篇
  1977年   10篇
  1976年   12篇
  1975年   8篇
  1974年   8篇
  1973年   8篇
  1968年   6篇
排序方式: 共有2065条查询结果,搜索用时 0 毫秒
91.
Drosophila ananassae and D. pallidosa are closely related, sympatric species that lack postmating isolation. Sexual isolation has been considered important in maintaining them as independent species. To clarify the behavioral processes leading to sexual isolation, we analyzed behavioral sequences and examined the effect of courtship song on mating success and on behaviors of both sexes by surgically removing male wings (song generators), female aristae (song receivers), or female wings (means of fluttering). We found that heterospecific courtship songs evoked female wing fluttering, whereas conspecific courtship song did not. Furthermore, female wing fluttering made courting males discontinue courtship. These findings suggest that strong sexual isolation is achieved through the following behavioral sequence: heterospecific song→female wing fluttering→courtship discontinuation.  相似文献   
92.
The chemical structure of oospolactone which is the metabolic product of Oospora astringenes was confirmed by the synthetical approach.  相似文献   
93.
Mammalian lefty and zebrafish antivin form a subgroup of the TGF beta superfamily. We report that mouse mutants for lefty2 have an expanded primitive streak and form excess mesoderm, a phenotype opposite to that of mutants for the TGF beta gene nodal. Analogously, overexpression of Antivin or Lefty2 in zebrafish embryos blocks head and trunk mesoderm formation, a phenotype identical to that of mutants caused by loss of Nodal signaling. The lefty2 mutant phenotype is partially suppressed by heterozygosity for nodal. Similarly, the effects of Antivin and Lefty2 can be suppressed by overexpression of the nodal-related genes cyclops and squint or the extracellular domain of ActRIIB. Expression of antivin is dependent on Nodal signaling, revealing a feedback loop wherein Nodal signals induce their antagonists Lefty2 and Antivin to restrict Nodal signaling during gastrulation.  相似文献   
94.
The sulfite resistance gene, SSU1-R, is widely distributed in wine yeasts. This gene has an upstream region distinct from that of the allelic gene, SSU1 and SSU1-R is expressed at a much higher level than SSU1. We characterized the promoters of both of these genes by analysis of their activity using the LacZ gene as a reporter. FZF1, the activator gene of SSU1, was shown to regulate SSU1-R expression indirectly. SSU1-R expression was activated under microaerobic conditions, and four 76-bp repeats, present within the SSU1-R promoter region, was essential for high expression. These results indicate that SSU1-R expression is regulated in different manner from that of SSU1. By deletion analysis of the SSU1-R promoter region, we found that at least two of the 76-bp repeats are necessary for promoter activity, and that the number of 76-bp repeats influences the activity. Hence, it was suggested that the number of 76-bp repeats increases in wine yeasts that require strong sulfite resistance.  相似文献   
95.
Mutant animals in the skin and hair have been used to identify important genes in biomedical research. We describe a new mutant rat, sparse and wavy hair (swh), that spontaneously arose in a colony of inbred WTC rats. The mutant phenotype was characterized by sparse and wavy hair, which was most prominent at age 3-4 weeks, and was inherited in an autosomal recessive manner. The swh/swh rats showed impaired gain of body weight, and their hair follicles were reduced both in number and size, associated with hypoplasia of the sebaceous glands and the subcutaneous fat tissue. Female swh/swh rats were unable to suckle their offspring. Their mammary glands were hypoplastic, and differentiation of mammary epithelial and myoepithelial cells was impaired. Linkage analysis of 579 backcross rats localized the swh locus to a .35-cM region between D17Rat131 and D17Rat50 in the distal end of rat Chr 17. The swh locus spanned the 3.7-Mb genomic region where 24 genes have been mapped and corresponded to the centromere region of the mouse Chr 2 or the region of the human Chr 10p11.1-p14. None of the genes or loci described in mouse or human hair and skin diseases mapped to these regions. These findings suggest that the rat swh is a novel mutation associated with impaired development of the skin appendages, such as hair follicles, sebaceous glands, and mammary glands, and will provide an experimental model to clarify a gene and mechanisms for development of skin appendages.  相似文献   
96.
We previously reported that glyceroglycolipid liposomes without cholesterol activated mouse peritoneal macrophages in vivo and in vitro, whereas glyceroglycolipid liposomes containing equimolar cholesterol did not. In order to characterize the properties of the glyceroglycolipid membranes, ESR spectroscopic studies were carried out with an acyl spin-labeled galactosyl ceramide (SL-GC) or a headgroup spin-labeled phospholipid (SL-6-DPPA) in 1,2-dipalmitoyl[beta-cellobiosyl-(1'---3)]glycerol (Cel-DAG) liposomal membranes. The ESR spectrum of the SL-GC in the Cel-DAG liposomes at 37 degrees C was a single broad line, indicating that the SL-GC molecules were excluded almost completely from Cel-DAG domains and formed clusters in the membranes. The spectrum of SL-6-DPPA in the Cel-DAG liposomes at 37 degrees C showed broad resonance lines with the central peak being the highest, while that at 60 degrees gave narrow lines with the low-field peak being the highest. This observation and rotational correlation time analysis showed that the molecular motions of spin-label moiety of the SL-6-DPPA were extremely restricted at 37 degrees C but not above Tc. These results suggest that below Tc the Cel-DAG molecules are packed tightly and restricted in motion in the membrane. Incorporation of cholesterol into the Cel-DAG liposomal membranes gave (1) the spectra of the SL-GC triplet, and (2) the spectra of the SL-6-DPPA narrow resonance with the low-field peak being the highest. These results suggest that cholesterol disturbs the rigid-packed structure of the Cel-DAG membrane and increases the molecular motions of the Cel-DAG. The DSC analysis of Cel-DAG with and without cholesterol agreed well to the results of the ESR technique. Thus we assume that peritoneal macrophages recognize the rigid-packed carbohydrate residues which are restricted in motion on the Cel-DAG membranes.  相似文献   
97.
98.
99.
Iwamoto K  Hamada H  Eguchi Y  Okamoto M 《Bio Systems》2011,103(3):384-391
After DNA damage, cells activate p53, a tumor suppressor gene, and select a cell fate (e.g., DNA repair, cell cycle arrest, or apoptosis). Recently, a p53 oscillatory behavior was observed following DNA damage. However, the relationship between this p53 oscillation and cell-fate selection is unclear. Here, we present a novel model of the DNA damage signaling pathway that includes p53 and whole cell cycle regulation and explore the relationship between p53 oscillation and cell fate selection. The simulation run without DNA damage qualitatively realized experimentally observed data from several cell cycle regulators, indicating that our model was biologically appropriate. Moreover, the comprehensive sensitivity analysis for the proposed model was implemented by changing the values of all kinetic parameters, which revealed that the cell cycle regulation system based on the proposed model has robustness on a fluctuation of reaction rate in each process. Simulations run with four different intensities of DNA damage, i.e. Low-damage, Medium-damage, High-damage, and Excess-damage, realized cell cycle arrest in all cases. Low-damage, Medium-damage, High-damage, and Excess-damage corresponded to the DNA damage caused by 100, 200, 400, and 800 J/m2 doses of UV-irradiation, respectively, based on expression of p21, which plays a crucial role in cell cycle arrest. In simulations run with High-damage and Excess-damage, the length of the cell cycle arrest was shortened despite the severe DNA damage, and p53 began to oscillate. Cells initiated apoptosis and were killed at 400 and 800 J/m2 doses of UV-irradiation, corresponding to High-damage and Excess-damage, respectively. Therefore, our model indicated that the oscillatory mode of p53 profoundly affects cell fate selection.  相似文献   
100.
Most Drosophila species sing species-specific pulse songs during their "precopulatory courtship." Three sibling species of the Drosophila montium species subgroup performed "copulatory courtship": males generated courtship songs by vibrating either wing only after mounting and during copulation. In these three species, strong sexual isolation was detected between D. ohnishii and D. lini and between D. ohnishii and D. ogumai, but not between D. lini and D. ogumai. Female showed strong repelling behavior when they were mounted by a heterospecific male in the species combinations including D. ohnishii, resulting in failure of the copulation attempt of the male. Acoustic analyses of courtship songs revealed that the pulse song was irregular, without any species-specific parameters, but that the frequency of the sine song was different among the three species in accordance with the modes of sexual isolation between them; it was significantly lower in D. ohnishii (mean ± SE = 193.0 ± 1.7 Hz) but higher in D. lini (253.4 ± 2.7 Hz) and D. ogumai (246.7 ± 5.3 Hz). We suggest that this difference in the sine song frequency is a sexual signal in the Specific Mate Recognition System (SMRS) among these three Drosophila species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号