首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   357篇
  免费   23篇
  国内免费   69篇
  2024年   4篇
  2023年   10篇
  2022年   33篇
  2021年   25篇
  2020年   20篇
  2019年   24篇
  2018年   20篇
  2017年   15篇
  2016年   19篇
  2015年   18篇
  2014年   24篇
  2013年   25篇
  2012年   26篇
  2011年   16篇
  2010年   15篇
  2009年   11篇
  2008年   18篇
  2007年   10篇
  2006年   17篇
  2005年   17篇
  2004年   13篇
  2003年   6篇
  2002年   6篇
  2001年   5篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1997年   4篇
  1996年   4篇
  1995年   7篇
  1994年   8篇
  1993年   5篇
  1992年   5篇
  1991年   4篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有449条查询结果,搜索用时 15 毫秒
61.
Xylan is the major hemicellulosic constituent in dicot secondary cell walls. Cell wall composition of cotton fiber changes dynamically throughout development. Not only the amounts but also the molecular sizes of the hemicellulosic polysaccharides show substantial changes during cotton fiber development. However, none of the genes encoding glycosyltransferases (GTs) responsible for synthesizing xylan have been isolated and characterized in cotton fiber. In this study, we applied a bioinformatics approach and identified two putative GTs from cotton, designated GhGT43A1 and GhGT43C1, which belong to the CAZy GT43 family and are closely related to Arabidopsis IRX9 and IRX14, respectively. We show that GhGT43A1 is highly and preferentially expressed in 15 and 20 days post‐anthesis (dpa) cotton fiber, whereas GhGT43C1 is ubiquitously expressed in most organs, with especially high expression in 15 dpa fiber and hypocotyl. Complementation analysis demonstrates that GhG43A1 and GhGT43C1 are orthologs of Arabidopsis IRX9 and IRX14, respectively. Furthermore, we show that overexpression of GhGT43A1 or GhGT43C1 in Arabidopsis results in increased xylan content. We also show that overexpression of GhGT43A1 or GhGT43C1 leads to more cellulose deposition. These findings suggest that GhGT43A1 and GhGT43C1 likely participate in xylan synthesis during fiber development.  相似文献   
62.
Pyridoxine (pyridoxamine) 5′-phosphate oxidase (PPOX) is involved in the biosynthetic pathway of vitamin B6, converting pyridoxine 5′-phosphate (PNP) or pyridoxamine 5′-phosphate (PMP) into pyridoxal 5′-phosphate (PLP). PLP is a well-known cofactor of numerous enzymes including transamination and decarboxylation reactions. We have previously identified a PPOX (AtPPOX-1) protein encoded by At5g49970 in Arabidopsis thaliana. Here, we report a second PPOX in Arabidopsis, which was named as AtPPOX-2 encoded by At2g46580. The RT-PCR amplified cDNA of AtPPOX-2 was cloned into an Escherichia coli expression vector and a yeast shuttle vector. Both PPOX enzyme assay and complementation of the oxidative stress sensitivity phenotype of a yeast PDX3 deletion mutant demonstrated that At2g46580 encodes a PPOX protein (AtPPOX-2). The catalytic efficiency of AtPPOX-1 is approximately 300-fold higher than that of AtPPOX-2 for PNP. Based on bioinformatic analysis, AtPPOX-2 has a putative mitochondrial transit peptide at the N-terminus. The truncated AtPPOX-2 without 18 amino acids at the N-terminal end lost PPOX activity, suggesting that the N-terminal 18 amino acids are necessary for the enzyme activity of AtPPOX-2. Phylogenetic analysis of AtPPOX-2 homologs from all domains of life suggests that AtPPOX-2 homologs in plants are the product of lateral gene transfer from the cyanobacterial endosymbionts from which plastids are derived.  相似文献   
63.
设计一种适合基因工程开发的无标签重组荞麦胰蛋白酶抑制剂rBTI-2,并研究其对肿瘤细胞的生长抑制作用。构建原核表达载体pExSecI-BTI-2,诱导表达获得可溶性目的蛋白,经Resource~(TM) Q纯化后作用于HL-7702、HepG2、EC9706和QBC-939细胞,MTT检测rBTI-2对其生长的影响,并与前期获得的几种融合蛋白酶抑制剂进行功能比对。结果表明:质粒pEXSecI-BTI-2构建成功,SDS-PAGE分析表明分子量约为7.8 kDa。MTT检测表明rBTI-2对几种肿瘤细胞的生长有明显的抑制作用,而对正常细胞HL-7702作用很小。几种蛋白酶抑制剂对肿瘤细胞的生长均有不同程度的影响,其中rBTI-2对肿瘤细胞的生长抑制作用要大于融合蛋白酶抑制剂rBTI,这为深入研究BTI诱导肿瘤细胞凋亡的分子机制及其应用开发提供了重要基础和研究依据。  相似文献   
64.
Folding, assembly, and trafficking of ion channels are tightly controlled processes and are important for biological functions relevant to health and disease. Here, we report that functional expression of the Eag channel is temperature-sensitive by a mechanism that is independent of trafficking or surface targeting of the channel protein. Eag channels in cells grown at 37 °C exhibit voltage-evoked gating charge movements but fail to conduct K(+) ions. By mutagenesis and chimeric channel studies, we show that the N- and C-terminal regions are involved in controlling a step after movement of the voltage sensor, as well as in regulating biophysical properties of the Eag channel. Synthesis and assembly of Eag at high temperature disrupt the ability of these domains to carry out their function. These results suggest an important role of the intracellular regions in the generation of Eag currents.  相似文献   
65.
To study the detachment stress on the ripeness of strawberry fruit, physiological characteristics of strawberry fruit on and off plant during ripeness and senescence processes were investigated. The results indicated that the ripeness of strawberry fruit upon detachment was accelerated, in terms of firmness, soluble solid content and especially color development. The color of fruit off plant changed rapidly from white to full red in 1–2 days. The respiratory rate in fruit off plant was strengthened, higher than that on plant. Abscisic acid level and ethylene production in fruit off plant were also higher than those on plant and auxin degradation was exacerbated by detachment. Expression levels of FaMYB1, FabHLH3 and FaTTG1 were generally reduced with phenotypes of redder color and more anthocyanin accumulation in fruit off plant. Results also suggested that the detachment initially stimulated ethylene and abscisic acid production and auxin degradation, which modulated ripening-related gene expression and at last enhanced fruit pigmentation.  相似文献   
66.
Contest decisions are influenced by the outcomes of recent fights (winner–loser effects). Steroid hormones and serotonin are closely associated with aggression and therefore probably also play important roles in mediating winner–loser effects. In mangrove rivulus fish, Kryptolebias marmoratus, individuals with higher testosterone (T), 11-ketotestosterone and cortisol levels are more capable of winning, but titres of these hormones do not directly mediate winner–loser effects. In this study, we investigated the effects of winning/losing experiences on brain expression levels of the receptor genes for androgen (AR), oestrogen α/β (ERα/β), glucocorticoid (GR) and serotonin (5-HT1AR). The effect of contest experience on AR gene expression depended on T levels: repeated losses decreased, whereas repeated wins increased AR gene expression in individuals with low T but not in individuals with medium or high T levels. These results lend strong support for AR being involved in mediating winner–loser effects, which, in previous studies, were more detectable in individuals with lower T. Furthermore, the expression levels of ERα/β, 5-HT1AR and GR genes were higher in individuals that initiated contests against larger opponents than in those that did not. Overall, contest experience, underlying endocrine state and hormone and serotonin receptor expression patterns interacted to modulate contest decisions jointly.  相似文献   
67.
The progranulin (PGRN) is known to protect regulatory T cells (Tregs) from a negative regulation by TNF-α, and its levels are elevated in various kinds of autoimmune diseases. Whether PGRN directly regulates the conversion of CD4+CD25-T cells into Foxp3-expressing regulatory T cells (iTreg), and whether PGRN affects the immunosuppressive function of Tregs, however, remain unknown. In this study we provide evidences demonstrating that PGRN is able to stimulate the conversion of CD4+CD25-T cells into iTreg in a dose-dependent manner in vitro. In addition, PGRN showed synergistic effects with TGF-β1 on the induction of iTreg. PGRN was required for the immunosuppressive function of Tregs, since PGRN-deficient Tregs have a significant decreased ability to suppress the proliferation of effector T cells (Teff). In addition, PGRN deficiency caused a marked reduction in Tregs number in the course of inflammatory arthritis, although no significant difference was observed in the numbers of Tregs between wild type and PGRN deficient mice during development. Furthermore, PGRN deficiency led to significant upregulation of the Wnt receptor gene Fzd2. Collectively, this study reveals that PGRN directly regulates the numbers and function of Tregs under inflammatory conditions, and provides new insight into the immune regulatory mechanism of PGRN in the pathogenesis of inflammatory and immune-related diseases.  相似文献   
68.
Interannual variation in plant phenology can lead to major modifications in the interannual variation of net ecosystem production (NEP) and net biome production (NBP) as a result of recent climate change in croplands. Continuous measurements of carbon flux using the eddy covariance technique were conducted in two winter wheat and summer maize double-cropped croplands during 2003–2012 in Yucheng and during 2007–2012 in Luancheng on the North China Plain. Our results showed that the difference between the NEP and the NBP, i.e., the crop economic yield, was conservative even though the NEP and the NBP for both sites exhibited marked fluctuations during the years of observation. A significant and positive relationship was found between the annual carbon uptake period (CUP) and the NEP as well as the NBP. The NEP and the NBP would increase by 14.8±5.2 and 14.7±6.6 g C m−2 yr−1, respectively, if one CUP-day was extended. A positive relationship also existed between the CUP and the NEP as well as the NBP for winter wheat and summer maize, respectively. The annual air temperature, through its negative effect on the start date of the CUP, determined the length of the CUP. The spring temperature was the main indirect factor controlling the annual carbon sequestration when a one-season crop (winter wheat) was considered. Thus, global warming can be expected to extend the length of the CUP and thus increase carbon sequestration in croplands.  相似文献   
69.
70.
The absorption of phospholipid may improve the fluidity of membrane and enzyme activities. Phospholipids also play a role in promoting Caveolae formation and membrane synthesis. Caveolin-1 has a significant effect on signaling pathways involved in regulating cell proliferation and stress responsiveness. Thus, we can speculate that Caveolin-1 could affect the sense of environmental stress. We use Chang liver cell line to investigate the ability of Caveolin-1 to modulate the cellular response to ethanol injury. Caveolin-1 downregulate cells (Cav-1?/?) were established by stable transfecting with psiRNA-CAV1 plasmids, which were more sensitive to toxic effects of ethanol than the untransfected parental cells (WT). Releasing of ALT and electric conductivity were changed significantly in Cav-1?/? cells compared with WT. Caveolin-1 gene silencing could obviously down-regulate the activities of protein kinase C-α (PKC-α) and phospho-p42/44 MAP kinase, indicating cell proliferation and self-repairing abilities were inhibited. However, the levels of Caveolin-1 and PKC-α were increased by phosphatidylcholine administration. The results indicated that the inhibition of lipid peroxidation by phosphatidylcholine could lead to the prevention of membrane disruption, which closely correlated with the level of Caveolin-1. Since the protective effects of phosphatidylcholine against ethanol-induced lipid peroxidation might be regulated by phospholipid-PKC-α signaling pathway, related with Caveolin-1, the potential effects of phosphatidylcholine on membranes need to be verified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号