首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   724篇
  免费   42篇
  国内免费   1篇
  2024年   1篇
  2023年   5篇
  2022年   10篇
  2021年   24篇
  2020年   10篇
  2019年   23篇
  2018年   23篇
  2017年   18篇
  2016年   28篇
  2015年   35篇
  2014年   43篇
  2013年   67篇
  2012年   59篇
  2011年   60篇
  2010年   30篇
  2009年   35篇
  2008年   47篇
  2007年   50篇
  2006年   38篇
  2005年   20篇
  2004年   17篇
  2003年   28篇
  2002年   19篇
  2001年   6篇
  2000年   5篇
  1999年   5篇
  1998年   7篇
  1997年   3篇
  1996年   4篇
  1995年   7篇
  1994年   2篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   5篇
  1987年   1篇
  1986年   1篇
  1985年   4篇
  1984年   5篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有767条查询结果,搜索用时 15 毫秒
121.
Eukaryotic initiation factor 4A (eIF4A) is an RNA-dependent ATPase and ATP-dependent RNA helicase that is thought to melt the 5' proximal secondary structure of eukaryotic mRNAs to facilitate attachment of the 40S ribosomal subunit. eIF4A functions in a complex termed eIF4F with two other initiation factors (eIF4E and eIF4G). Two isoforms of eIF4A, eIF4AI and eIF4AII, which are encoded by two different genes, are functionally indistinguishable. A third member of the eIF4A family, eIF4AIII, whose human homolog exhibits 65% amino acid identity to human eIF4AI, has also been cloned from Xenopus and tobacco, but its function in translation has not been characterized. In this study, human eIF4AIII was characterized biochemically. While eIF4AIII, like eIF4AI, exhibits RNA-dependent ATPase activity and ATP-dependent RNA helicase activity, it fails to substitute for eIF4AI in an in vitro-reconstituted 40S ribosome binding assay. Instead, eIF4AIII inhibits translation in a reticulocyte lysate system. In addition, whereas eIF4AI binds independently to the middle and carboxy-terminal fragments of eIF4G, eIF4AIII binds to the middle fragment only. These functional differences between eIF4AI and eIF4AIII suggest that eIF4AIII might play an inhibitory role in translation under physiological conditions.  相似文献   
122.
Motile cilia of multiciliated epithelial cells undergo synchronized beating to produce fluid flow along the luminal surface of various organs. Each motile cilium consists of an axoneme and a basal body (BB), which are linked by a “transition zone” (TZ). The axoneme exhibits a characteristic 9+2 microtubule arrangement important for ciliary motion, but how this microtubule system is generated is not yet fully understood. Here we show that calmodulin-regulated spectrin-associated protein 3 (CAMSAP3), a protein that can stabilize the minus-end of a microtubule, concentrates at multiple sites of the cilium–BB complex, including the upper region of the TZ or the axonemal basal plate (BP) where the central pair of microtubules (CP) initiates. CAMSAP3 dysfunction resulted in loss of the CP and partial distortion of the BP, as well as the failure of multicilia to undergo synchronized beating. These findings suggest that CAMSAP3 plays pivotal roles in the formation or stabilization of the CP by localizing at the basal region of the axoneme and thereby supports the coordinated motion of multicilia in airway epithelial cells.  相似文献   
123.
BackgroundThe aim of this study was to investigate the performance of the RapidPlan (RP ) using models registered pseudostructures, and to determine how many structures are required for automatic optimization of volumetric modulated arc therapy (VMAT) for postoperative uterine cervical cancer.Materials and methodsPseudo-structures around the PTV were retrospectively contoured for patients who had completed treatment at five institutions. For 22 common patients, plans were generated with a single optimization for models with two (RP_2), four (RP_4), and five (RP_5) registered structures, and the dosimetric parameters of these models were compared with a clinical plan with several optimizations.ResultsMost dosimetric parameters showed no major differences between each RP model. In particular, the rectum Dmax, V50Gy, and V40Gy with RP_2, RP_4, and RP_5 were not significantly different, and were lower than those of the clinical plan. The average proportions of plans achieving acceptable criteria for dosimetric parameters were close to 100% for all models. Using RP_2, the average time for the VMAT planning was reduced by 88 minutes compared with the clinical plan.ConclusionThe RapidPlan model with two registered pseudo-structures could generate clinically acceptable plans while saving time.  相似文献   
124.
125.
126.

Aspergillus niger α-glucosidase (ANG), a member of glycoside hydrolase family 31, catalyzes hydrolysis of α-glucosidic linkages at the non-reducing end. In the presence of high concentrations of maltose, the enzyme also catalyzes the formation of α-(1→6)-glucosyl products by transglucosylation and it is used for production of the industrially useful panose and isomaltooligosaccharides. The initial transglucosylation by wild-type ANG in the presence of 100 mM maltose [Glc(α1–4)Glc] yields both α-(1→6)- and α-(1→4)-glucosidic linkages, the latter constituting ~25% of the total transfer reaction product. The maltotriose [Glc(α1–4)Glc(α1–4)Glc], α-(1→4)-glucosyl product disappears quickly, whereas the α-(1→6)-glucosyl products panose [Glc(α1–6)Glc(α1–4)Glc], isomaltose [Glc(α1–6)Glc], and isomaltotriose [Glc(α1–6)Glc(α1–6)Glc] accumulate. To modify the transglucosylation properties of ANG, residue Asn694, which was predicted to be involved in formation of the plus subsites of ANG, was replaced with Ala, Leu, Phe, and Trp. Except for N694A, the mutations enhanced the initial velocity of the α-(1→4)-transfer reaction to produce maltotriose, which was then degraded at a rate similar to that by wild-type ANG. With increasing reaction time, N694F and N694W mutations led to the accumulation of larger amounts of isomaltose and isomaltotriose than achieved with the wild-type enzyme. In the final stage of the reaction, the major product was panose (N694A and N694L) or isomaltose (N694F and N694W).

  相似文献   
127.
Vertebrate Wnt proteins activate several distinct pathways. Intrinsic differences among Wnt ligands and Frizzled (Fzd) receptors, and the availability of pathway-specific coreceptors, LRP5/6, and Ror2, affect pathway selection. Here, we show that a secreted glycoprotein, Cthrc1, is involved in selective activation of the planar cell polarity (PCP) pathway by Wnt proteins. Although Cthrc1 null mutant mice appeared normal, the introduction of a heterozygous mutation of a PCP gene, Vangl2, resulted in abnormalities characteristic of PCP mutants. In HEK293T cells, Cthrc1 activated the PCP pathway but suppressed the canonical pathway. Cell-surface-anchored Cthrc1 bound to Wnt proteins, Fzd proteins, and Ror2 and enhanced the interaction of Wnt proteins and Fzd/Ror2 by forming the Cthrc1-Wnt-Fzd/Ror2 complex. Consistent with this, Ror2 mutant mice also showed PCP-related abnormalities in the inner ear. These results suggest that Cthrc1 is a Wnt cofactor protein that selectively activates the Wnt/PCP pathway by stabilizing ligand-receptor interaction.  相似文献   
128.
The antioxidant activity of butane-type lignans was evaluated. Secoisolariciresinol (SECO) and dihydroguaiaretic acid (DGA) showed higher radical scavenging activity than that of 7,7'-dioxodihydroguaiaretic acid (ODGA). SECO and DGA inhibited the oxidation of unsaturated fatty acid. Both enantiomers of DGA were also lipoxygenase inhibitors, but neither enantiomer of SECO inhibited the lipoxygenase activity.  相似文献   
129.

Background

Several species of ascidians accumulate extremely high levels of vanadium ions in the vacuoles of their blood cells (vanadocytes). The vacuoles of vanadocytes also contain many protons and sulfate ions. To maintain the concentration of sulfate ions, an active transporter must exist in the blood cells, but no such transporter has been reported in vanadium-accumulating ascidians.

Methods

We determined the concentration of vanadium and sulfate ions in the blood cells (except for the giant cells) of Ascidia sydneiensis samea. We cloned cDNA for an Slc13-type sulfate transporter, AsSUL1, expressed in the vanadocytes of A. sydneiensis samea. The synthetic mRNA of AsSUL1 was introduced into Xenopus oocytes, and its ability to transport sulfate ions was analyzed.

Results

The concentrations of vanadium and sulfate ions in the blood cells (except for the giant cells) were 38 mM and 86 mM, respectively. The concentration of sulfate ions in the blood plasma was 25 mM. The transport activity of AsSUL1 was dependent on sodium ions, and its maximum velocity and apparent affinity were 2500 pmol/oocyte/h and 1.75 mM, respectively.

General significance

This could account for active uptake of sulfate ions from blood plasma where sulfate concentration is 25 mM, as determined in this study.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号