首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   791篇
  免费   42篇
  国内免费   1篇
  834篇
  2023年   5篇
  2022年   19篇
  2021年   19篇
  2020年   13篇
  2019年   21篇
  2018年   20篇
  2017年   15篇
  2016年   19篇
  2015年   33篇
  2014年   33篇
  2013年   72篇
  2012年   63篇
  2011年   48篇
  2010年   34篇
  2009年   32篇
  2008年   38篇
  2007年   34篇
  2006年   35篇
  2005年   15篇
  2004年   31篇
  2003年   27篇
  2002年   23篇
  2001年   17篇
  2000年   14篇
  1999年   17篇
  1998年   4篇
  1997年   6篇
  1996年   6篇
  1995年   3篇
  1993年   4篇
  1992年   10篇
  1991年   6篇
  1990年   6篇
  1989年   8篇
  1988年   4篇
  1987年   5篇
  1986年   7篇
  1983年   5篇
  1982年   5篇
  1981年   5篇
  1980年   3篇
  1979年   5篇
  1977年   4篇
  1976年   4篇
  1974年   4篇
  1973年   6篇
  1971年   3篇
  1969年   2篇
  1968年   4篇
  1967年   4篇
排序方式: 共有834条查询结果,搜索用时 0 毫秒
21.
ObjectiveSeveral studies on associations between human leukocyte antigen (HLA) allele frequencies and susceptibility to systemic sclerosis (SSc) have been reported. Anti-centromere antibodies (ACA) and anti-topoisomerase I antibodies (ATA) are found in SSc patients. Here, we sought to identify HLA alleles associated with SSc in Japanese, and explored their associations with SSc phenotypes including the presence of autoantibodies.MethodsAssociations of HLA-DRB1, DQB1, and DPB1 were analyzed in 463 Japanese SSc patients and 413 controls.ResultsWe found that DRB1*13:02 (P = 0.0011, Pc = 0.0319, odds ratio [OR] 0.46, 95% confidence interval [CI] 0.29–0.73), DRB1*14:06 (P = 6.60X10-5, Pc = 0.0020, OR 0.05, 95%CI 0.01–0.41), DQB1*03:01 (P = 0.0009, Pc = 0.0150, OR 0.56, 95%CI 0.40–0.79), and DPB1*02:01 (P = 5.16X10-6, Pc = 8.77X10-5, OR 0.52, 95%CI 0.39–0.69) were protectively associated with SSc. In addition, these four alleles seemed to be independently associated with the protection against the susceptibility of SSc. On the other hand, we could not find predisposing alleles for overall SSc. With respect to SSc subsets, a tendency for these four alleles to be protectively associated was observed. However, there was a significant association between DRB1*01:01, DRB1*10:01, DQB1*05:01, and DPB1*04:02 and the susceptibility to SSc with ACA. On the other hand, the presence of DRB1*15:02, DQB1*06:01, DPB1*03:01, and DPB1*09:01 was associated with SSc with ATA.ConclusionThus, the present study has identified protective associations of the four HLA class II alleles with overall Japanese SSc and predisposing associations of HLA class II alleles with Japanese SSc subsets.  相似文献   
22.
23.
Nitta H  Kobayashi H  Irie A  Baba H  Okamoto K  Imamura T 《FEBS letters》2007,581(30):5935-5939
The effect of a serine protease (ASP) secreted from Aeromonas sobria on plasma coagulation was investigated. Proteolytically active ASP promoted human plasma coagulation in a dose-dependent manner. Consistent with the preference for a factor Xa-specific oligo-peptide substrate, ASP produced enzymatic activity from human prothrombin but not from factors IX and X. ASP cleaved prothrombin to produce enzymatically active 37 kDa-fragment displaying the same molecular mass as alpha-thrombin. ASP is the first bacterial serine protease that produces alpha-thrombin, through which ASP may contribute to the induction of thrombotic tendency in disseminated intravascular coagulation complicated with sepsis caused by A. sobria infections.  相似文献   
24.
Cucurbitaceae plants contain characteristic triterpenoids. Momordica charantia, known as a bitter melon, contains cucurbitacins and multiflorane type triterpenes, which confer bitter tasting and exhibit pharmacological activities. Their carbon skeletons are biosynthesized from 2,3-oxidosqualene by responsible oxidosqualene cyclase (OSC). In order to identify OSCs in M. charantia, RNA-seq analysis was carried out from ten different tissues. The functional analysis of the resulting four OSC genes revealed that they were cucurbitadienol synthase (McCBS), isomultiflorenol synthase (McIMS), β-amyrin synthase (McBAS) and cycloartenol synthase (McCAS), respectively. Their distinct expression patterns based on RPKM values and quantitative RT-PCR suggested how the characteristic triterpenoids were biosynthesized in each tissue. Although cucurbitacins were finally accumulated in fruits, McCBS showed highest expression in leaves indicating that the early step of cucurbitacins biosynthesis takes place in leaves, but not in fruits.

Abbreviations: OSC: oxidosqualene cyclase; RPKM: reads perkilobase of exon per million mapped reads  相似文献   

25.
Cervical cancer (CC) is one of the most common gynecological malignancies with poor prognosis for advanced CC patients. LRRC8A is a volume-regulated anion channel protein involved in cellular homeostasis, but its role in CC remains largely unknown. In this study, we found that LRRC8A is elevated in CC and associated with poor prognosis. LRRC8A maintains cell survivals under the hypotonic condition, and promotes tumorigenesis through apoptosis suppression in vitro and in vivo. Notably, LRRC8A is upregulated by NSUN2-mediated m5C modification. m5C modified-LRRC8A mRNA is bound by the RNA binding protein YBX1 followed by the increased RNA stability. Moreover, loss of NSUN2 suppresses the proliferation and metastasis of CC cells, and NSUN2 expression is positively correlated with LRRC8A expression in CC. Altogether, our study demonstrates that the NSUN2-m5C-LRRC8A axis is crucial and would be a potential therapeutic target for CC.  相似文献   
26.
Autophagy, a system for the bulk degradation of intracellular components, is essential for homeostasis and the healthy physiology and development of cells and tissues. Its deregulation is associated with human disease. Thus, methods to modulate autophagic activity are critical for analysis of its role in mammalian cells and tissues. Here we report a method to inhibit autophagy using a mutant variant of the protein ATG7, a ubiquitin E1-like enzyme essential for autophagosome formation. During autophagy, ATG7 activates the conjugation of LC3 (ATG8) with phosphatidylethanolamine (PE) and ATG12 with ATG5. Human ATG7 interactions with LC3 or ATG12 require a thioester bond involving the ATG7 cysteine residue at position 572. We generated TetOff cells expressing mutant ATG7 protein carrying a serine substitution of this critical cysteine residue (ATG7C572S). Because ATG7C572S forms stable intermediate complexes with LC3 or ATG12, its expression resulted in a strong blockage of the ATG-conjugation system and suppression of autophagosome formation. Consequently, ATG7C572S mutant protein can be used as an inhibitor of autophagy.  相似文献   
27.
28.
In wind‐pollinated plants, male‐biased sex allocation is often positively associated with plant size and height. However, effects of size (biomass or reproductive investment) and height were not separated in most previous studies. Here, using experimental populations of monoecious plants, Ambrosia altemisiifolia, we examined (1) how male and female reproductive investments (MRI and FRI) change with biomass and height, (2) how MRI and height affect male reproductive success (MRS) and pollen dispersal, and (3) how height affects seed production. Pollen dispersal kernel and selection gradients on MRS were estimated by 2,102 seeds using six microsatellite markers. First, MRI increased with height, but FRI did not, suggesting that sex allocation is more male‐biased with increasing plant height. On the other hand, both MRI and FRI increased with biomass but often more greatly for FRI, and consequently, sex allocation was often female‐biased with biomass. Second, MRS increased with both height and MRI, the latter having the same or larger effect on MRS. Estimated pollen dispersal kernel was fat‐tailed, with the maximum distance between mates tending to increase with MRI but not with height. Third, the number of seeds did not increase with height. Those findings showed that the male‐biased sex allocation in taller plants of A. artemisiifolia is explained by a direct effect of height on MRS.  相似文献   
29.
30.

Background

Monocarboxylate transporters (MCTs) transport monocarboxylates such as lactate, pyruvate and ketone bodies. These transporters are very attractive therapeutic targets in cancer. Elucidations of the functions and structures of MCTs is necessary for the development of effective medicine which targeting these proteins. However, in comparison with MCT1, there is little information on location of the function moiety of MCT4 and which constituent amino acids govern the transport function of MCT4. The aim of the present work was to determine the molecular mechanism of L-lactate transport via hMCT4.

Experimental approach

Transport of L-lactate via hMCT4 was determined by using hMCT4 cRNA-injected Xenopus laevis oocytes. hMCT4 mediated L-lactate uptake in oocytes was measured in the absence and presence of chemical modification agents and 4,4′-diisothiocyanostilbene-2,2′-disulphonate (DIDS). In addition, L-lactate uptake was measured by hMCT4 arginine mutants. Immunohistochemistry studies revealed the localization of hMCT4.

Results

In hMCT4-expressing oocytes, treatment with phenylglyoxal (PGO), a compound specific for arginine residues, completely abolished the transport activity of hMCT4, although this abolishment was prevented by the presence of L-lactate. On the other hand, chemical modifications except for PGO treatment had no effect on the transport activity of hMCT4. The transporter has six conserved arginine residues, two in the transmembrane-spanning domains (TMDs) and four in the intracellular loops. In hMCT4-R278 mutants, the uptake of L-lactate is void of any transport activity without the alteration of hMCT4 localization.

Conclusions

Our results suggest that Arg-278 in TMD8 is a critical residue involved in substrate, L-lactate recognition by hMCT4.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号