首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20454篇
  免费   945篇
  国内免费   1244篇
  22643篇
  2024年   189篇
  2023年   330篇
  2022年   635篇
  2021年   1084篇
  2020年   772篇
  2019年   934篇
  2018年   812篇
  2017年   625篇
  2016年   893篇
  2015年   1256篇
  2014年   1478篇
  2013年   1512篇
  2012年   1771篇
  2011年   1537篇
  2010年   957篇
  2009年   823篇
  2008年   953篇
  2007年   770篇
  2006年   738篇
  2005年   580篇
  2004年   529篇
  2003年   477篇
  2002年   410篇
  2001年   374篇
  2000年   345篇
  1999年   313篇
  1998年   209篇
  1997年   188篇
  1996年   177篇
  1995年   152篇
  1994年   120篇
  1993年   107篇
  1992年   133篇
  1991年   110篇
  1990年   96篇
  1989年   58篇
  1988年   46篇
  1987年   49篇
  1986年   25篇
  1985年   26篇
  1984年   16篇
  1983年   20篇
  1982年   4篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
  1966年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Structural profiling of healthy human gut microbiota across heterogeneous populations is necessary for benchmarking and characterizing the potential ecosystem services provided by particular gut symbionts for maintaining the health of their hosts. Here we performed a large structural survey of fecal microbiota in 314 healthy young adults, covering 20 rural and urban cohorts from 7 ethnic groups living in 9 provinces throughout China. Canonical analysis of unweighted UniFrac principal coordinates clustered the subjects mainly by their ethnicities/geography and less so by lifestyles. Nine predominant genera, all of which are known to contain short-chain fatty acid producers, co-occurred in all individuals and collectively represented nearly half of the total sequences. Interestingly, species-level compositional profiles within these nine genera still discriminated the subjects according to their ethnicities/geography and lifestyles. Therefore, a phylogenetically diverse core of gut microbiota at the genus level may be commonly shared by distinctive healthy populations as functionally indispensable ecosystem service providers for the hosts.  相似文献   
52.
53.
54.
Cadmium (Cd), a toxic environmental contaminant, induces neurodegenerative diseases. Celastrol, a plant‐derived triterpene, has shown neuroprotective effects in various disease models. However, little is known regarding the effect of celastrol on Cd‐induced neurotoxicity. Here, we show that celastrol protected against Cd‐induced apoptotic cell death in neuronal cells. This is supported by the findings that celastrol strikingly attenuated Cd‐induced viability reduction, morphological change, nuclear fragmentation, and condensation, as well as activation of caspase‐3 in neuronal cells. Concurrently, celastrol remarkably blocked Cd‐induced phosphorylation of c‐Jun N‐terminal kinase (JNK), but not extracellular signal‐regulated kinases 1/2 and p38, in neuronal cells. Inhibition of JNK by SP600125 or over‐expression of dominant negative c‐Jun potentiated celastrol protection against Cd‐induced cell death. Furthermore, pre‐treatment with celastrol prevented Cd down‐regulation of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and activation of phosphoinositide 3′‐kinase/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling in neuronal cells. Over‐expression of wild‐type PTEN enhanced celastrol inhibition of Cd‐activated Akt/mTOR signaling and cell death in neuronal cells. The findings indicate that celastrol prevents Cd‐induced neuronal cell death via targeting JNK and PTEN‐Akt/mTOR network. Our results strongly suggest that celastrol may be exploited for the prevention of Cd‐induced neurodegenerative disorders.

  相似文献   

55.
56.
Zheng  Yafei  Wu  Yuyun  Liu  Ying  Guo  Zhirui  Bai  Tingting  Zhou  Ping  Wu  Jin  Yang  Qin  Liu  Zhengxia  Lu  Xiang 《Neurochemical research》2019,44(7):1549-1566

This study aimed to investigate the potential effects of gold nanoparticles (Au-NPs) on rat cortical neurons exposed to oxygen–glucose deprivation/reperfusion (OGD/R) and to elucidate the corresponding mechanisms. Primary rat cortical neurons were exposed to OGD/R, which is commonly used in vitro to mimic ischemic injury, and then treated with 5- or 20-nm Au-NPs. We then evaluated cell viability, apoptosis, oxidative stress, and mitochondrial respiration in these neurons. We found that 20-nm Au-NPs increased cell viability, alleviated neuronal apoptosis and oxidative stress, and improved mitochondrial respiration after OGD/R injury, while opposite effects were observed for 5-nm Au-NPs. In terms of the underlying mechanisms, we found that Au-NPs could regulate Akt signaling. Taken together, these results show that 20-nm Au-NPs can protect primary cortical neurons against OGD/R injury, possibly by decreasing apoptosis and oxidative stress, while activating Akt signaling and mitochondrial pathways. Our results suggest that Au-NPs may be potential therapeutic agents for ischemic stroke.

  相似文献   
57.
In this study, we report three novel naturally occurring compounds, blapsins A (1) and B (2), and blapsamide (3) from the ethanol extract of the stink beetle, Blaps japanensis. The structures of these compounds were determined using spectroscopic methods. Compound 3 is a phenolic compound bearing a formamido group in the structure. Functional studies revealed that compounds 1 and 2 potently inhibited 14-3-3 protein-protein interactions (PPIs) with IC(50) values of 9.2 and 10.0 μM as determined by an ELISA assay, and 2.0 and 2.5 μM in an FP assay, respectively. These compounds represent the first example of natural small-molecule 14-3-3 inhibitors.  相似文献   
58.
59.
Muscle atrophy caused by disuse is accompanied by adverse physiological and functional consequences. Satellite cells are the primary source of skeletal muscle regeneration. Satellite cell dysfunction, as a result of impaired proliferative potential and/or increased apoptosis, is thought to be one of the causes contributing to the decreased muscle regeneration capacity in atrophy. We have previously shown that electrical stimulation improved satellite cell dysfunction. Here we test whether electrical stimulation can also enhance satellite cell proliferative potential as well as suppress apoptotic cell death in disuse-induced muscle atrophy. Eight-week-old male BALB/c mice were subjected to a 14-day hindlimb unloading procedure. During that period, one limb (HU-ES) received electrical stimulation (frequency: 20 Hz; duration: 3 h, twice daily) while the contralateral limb served as control (HU). Immunohistochemistry and western blotting techniques were used to characterize specific proteins in cell proliferation and apoptosis. The HU-ES soleus muscles showed significant improvement in muscle mass, cross-sectional area, and peak tetanic force relative to the HU limb (p<0.05). The satellite cell proliferative activity as detected within the BrdU+/Pax7+ population was significantly higher (p<0.05). The apoptotic myonuclei (detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) and the apoptotic satellite cells (detected by cleaved Poly [ADP-ribose] polymerase co-labeled with Pax7) were reduced (p<0.05) in the HU-ES limb. Furthermore the apoptosis-inducing factor and cleaved caspase-3 were down-regulated while the anti-apoptotic Bcl-2 protein was up-regulated (p<0.05), in the HU-ES limb. These findings suggest that the electrical stimulation paradigm provides an effective stimulus to rescue the loss of myonuclei and satellite cells in disuse muscle atrophy, thus maintaining a viable satellite cell pool for subsequent muscle regeneration. Optimization of stimulation parameters may enhance the outcome of the intervention.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号