首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4825篇
  免费   429篇
  国内免费   357篇
  2024年   21篇
  2023年   77篇
  2022年   171篇
  2021年   278篇
  2020年   181篇
  2019年   218篇
  2018年   226篇
  2017年   148篇
  2016年   202篇
  2015年   322篇
  2014年   393篇
  2013年   360篇
  2012年   445篇
  2011年   378篇
  2010年   229篇
  2009年   234篇
  2008年   268篇
  2007年   212篇
  2006年   169篇
  2005年   138篇
  2004年   124篇
  2003年   128篇
  2002年   122篇
  2001年   87篇
  2000年   74篇
  1999年   62篇
  1998年   31篇
  1997年   38篇
  1996年   37篇
  1995年   45篇
  1994年   33篇
  1993年   26篇
  1992年   29篇
  1991年   22篇
  1990年   18篇
  1989年   16篇
  1988年   8篇
  1987年   9篇
  1986年   9篇
  1985年   3篇
  1984年   6篇
  1983年   5篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1967年   1篇
排序方式: 共有5611条查询结果,搜索用时 31 毫秒
911.
Methylation and demethylation of DNA are the complementary processes of epigenetic regulation. These two types of regulation influence a diverse array of cellular activities, including the maintenance of pluripotency and self-renewal in embryonic stem cells. It was generally believed that DNA demethylation occurs passively over several cycles of DNA replication and that active DNA demethylation is rare. Recently, evidence for active DNA demethylation has been obtained in several cancer, neuronal, and embryonic stem cell lines. Studies in embryonic stem cell models, however, suggested that active DNA demethylation might be restricted to the early development of progenitor cells. Whether active demethylation is involved in terminal differentiation of adult stem cells is poorly understood. We provide evidence that active DNA demethylation does occur during terminal specification of stem cells in an adipose-derived mesenchymal stem cell-derived osteogenic differentiation model. The medium CpG regions in promoters of the Dlx5, Runx2, Bglap, and Osterix osteogenic lineage-specific genes were demethylated during the increase in gene expression associated with osteogenic differentiation. The growth arrest and DNA damage-inducible protein GADD45A was up-regulated in these processes. Knockdown of GADD45A led to hypermethylation of Dlx5, Runx2, Bglap, and Osterix promoters, followed by suppression of the expression of these genes and interruption of osteogenic differentiation. These results reveal that GADD45A plays an essential role in gene-specific active DNA demethylation during adult stem cell differentiation. They enhance the current knowledge of osteogenic specification and may also lead to a better understanding of the common mechanisms underlying epigenetic regulation in adult stem cell differentiation.  相似文献   
912.
During cell division, interaction between kinetochores and dynamic spindle microtubules governs chromosome movements. The microtubule depolymerase mitotic centromere-associated kinesin (MCAK) is a key regulator of mitotic spindle assembly and dynamics. However, the regulatory mechanisms underlying its depolymerase activity during the cell cycle remain elusive. Here, we showed that PLK1 is a novel regulator of MCAK in mammalian cells. MCAK interacts with PLK1 in vitro and in vivo. The neck and motor domain of MCAK associates with the kinase domain of PLK1. MCAK is a novel substrate of PLK1, and the phosphorylation stimulates its microtubule depolymerization activity of MCAK in vivo. Overexpression of a polo-like kinase 1 phosphomimetic mutant MCAK causes a dramatic increase in misaligned chromosomes and in multipolar spindles in mitotic cells, whereas overexpression of a nonphosphorylatable MCAK mutant results in aberrant anaphase with sister chromatid bridges, suggesting that precise regulation of the MCAK activity by PLK1 phosphorylation is critical for proper microtubule dynamics and essential for the faithful chromosome segregation. We reasoned that dynamic regulation of MCAK phosphorylation by PLK1 is required to orchestrate faithful cell division, whereas the high levels of PLK1 and MCAK activities seen in cancer cells may account for a mechanism underlying the pathogenesis of genomic instability.  相似文献   
913.
Habenula--a new target for treatment of intractable depression   总被引:1,自引:0,他引:1  
Wang S 《生理科学进展》2011,42(6):407-412
Despite substantial advancement in psychopharmacological and electro-magnetic treatments over the last decades on the depression patients, there are non-responders remain with a chronic disease and high suicidal risk yet. Deep brain stimulation (DBS) is now being experimentally to treat the intractable depression and yielded an impressive therapeutic benefit, and especially few adverse effect occurred. The beneficial action of DBS is closely related to the stimulation sit. And the efficacy of high frequency stimulation of lateral habenula is one of the best choice. In depression, the concentration of 5-HT released by the raphe nuclei is decreased. It's due to mainly the overactivation of the lateral habenula. High frequency stimulation of lateral habenula impairs the activation of lateral habenula, and the inhibitory effect of lateral habenula on raphe nuclei is decreased. Then, the 5-HT concentration released by the raphe nuclei is increased, the pathological changes of depression is eliminated. The lateral habenula could be a promising novel target for BDS in the cases of intractable depression.  相似文献   
914.
Li SP  Zhao KJ  Ji ZN  Song ZH  Dong TT  Lo CK  Cheung JK  Zhu SQ  Tsim KW 《Life sciences》2003,73(19):2503-2513
Cordyceps sinensis, a well-known traditional Chinese medicine, possesses activities in anti-tumour, anti-oxidation and stimulating the immune system; however, the identity of active component(s) is not determined. By using anti-oxidation activity-guided fractionation, a polysaccharide of molecular weight approximately 210 kDa was isolated from cultured Cordyceps mycelia by ion-exchange and sizing chromatography. The isolated polysaccharide, having strong anti-oxidation activity, contains glucose, mannose and galactose in a ratio of 1 : 0.6 : 0.75. The pre-treatment of isolated polysaccharide on the cultured rat pheochromocytoma PC12 cells shows strong protective effect against hydrogen peroxide (H(2)O(2))-induced insult. Treatment of the cells with the isolated polysaccharide at 100 microg/ml prior to H(2)O(2) exposure significantly elevated the survival of PC12 cells in culture by over 60%. In parallel, the H(2)O(2)-induced production of malondialdehyde in cultured cells was markedly reduced by the polysaccharide treatment. Moreover, the pre-treatment of the isolated polysaccharide significantly attenuated the changes of glutathione peroxidase and superoxide dismutase activities in H(2)O(2)-treated cells in a dose-dependent manner. This is the first report in identifying a polysaccharide from Cordyceps, which protects against the free radical-induced neuronal cell toxicity.  相似文献   
915.
Apparent kinetic constants k(cat) and K(m) were determined for tyrocidine thioesterase (TycC TE) using randomized peptide N-acetylcysteamine thioesters as substrate analogues. The enzyme has been found to be adequately active for the synthesis of positional-scanning libraries for novel antibiotic screening with reduced k(cat)/K(m) in the range of 2 to 82 folds lower than that of the wild-type sequence  相似文献   
916.
917.
918.
The sludge digestate stabilized by mesophilic anaerobic digestion was further degraded through thermophilic anaerobic digestion using 0–10 % (v/v) of thermophilic, proteolytic Coprothermobacter proteolyticus, and/or methanogenic granular sludge. The results demonstrated that the temperature shift to thermophilic condition promoted abiotic solubilization of proteins and reactivated the fermentative bacteria and methanogens indigenous in the sludge digestate, resulting in a final methane yield of 6.25 mmol-CH4/g-volatile suspended solid (VSS) digestate. The addition of C. proteolyticus accelerated the hydrolysis and fermentation of proteins and polysaccharides in the digestate during the early stage of thermophilic anaerobic digestion and stimulated methane production by syntrophic cooperation with methanogenic granular sludge. In the treatment with granular sludge and inoculated with 10 % (v/v) of C. proteolyticus, a final methane yield of 7 mmol-CH4/g-VSS digestate was obtained, and 48.4 % proteins and 27.0 % polysaccharides were degraded. The dissolved proteins were contributed by abiotic factor, C. proteolyticus, and indigenous digestate bacteria, respectively, by around 16, 28, and 56 %.  相似文献   
919.
920.
Human cells have evolved elaborate mechanisms for responding to DNA damage to maintain genome stability and prevent carcinogenesis. For instance, the cell cycle can be arrested at different stages to allow time for DNA repair. The APC/CCdh1 ubiquitin ligase mainly regulates mitotic exit but is also implicated in the DNA damage‐induced G2 arrest. However, it is currently unknown whether APC/CCdh1 also contributes to DNA repair. Here, we show that Cdh1 depletion causes increased levels of genomic instability and enhanced sensitivity to DNA‐damaging agents. Using an integrated proteomics and bioinformatics approach, we identify CtIP, a DNA‐end resection factor, as a novel APC/CCdh1 target. CtIP interacts with Cdh1 through a conserved KEN box, mutation of which impedes ubiquitylation and downregulation of CtIP both during G1 and after DNA damage in G2. Finally, we find that abrogating the CtIP–Cdh1 interaction results in delayed CtIP clearance from DNA damage foci, increased DNA‐end resection, and reduced homologous recombination efficiency. Combined, our results highlight the impact of APC/CCdh1 on the maintenance of genome integrity and show that this is, at least partially, achieved by controlling CtIP stability in a cell cycle‐ and DNA damage‐dependent manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号