全文获取类型
收费全文 | 92637篇 |
免费 | 6736篇 |
国内免费 | 6419篇 |
专业分类
105792篇 |
出版年
2024年 | 203篇 |
2023年 | 1256篇 |
2022年 | 2946篇 |
2021年 | 4873篇 |
2020年 | 3197篇 |
2019年 | 4026篇 |
2018年 | 3958篇 |
2017年 | 2874篇 |
2016年 | 4056篇 |
2015年 | 5852篇 |
2014年 | 6898篇 |
2013年 | 7254篇 |
2012年 | 8505篇 |
2011年 | 7750篇 |
2010年 | 4495篇 |
2009年 | 4192篇 |
2008年 | 4788篇 |
2007年 | 4155篇 |
2006年 | 3539篇 |
2005年 | 2823篇 |
2004年 | 2317篇 |
2003年 | 2109篇 |
2002年 | 1701篇 |
2001年 | 1474篇 |
2000年 | 1342篇 |
1999年 | 1408篇 |
1998年 | 821篇 |
1997年 | 893篇 |
1996年 | 813篇 |
1995年 | 775篇 |
1994年 | 674篇 |
1993年 | 570篇 |
1992年 | 682篇 |
1991年 | 537篇 |
1990年 | 455篇 |
1989年 | 331篇 |
1988年 | 278篇 |
1987年 | 219篇 |
1986年 | 185篇 |
1985年 | 210篇 |
1984年 | 124篇 |
1983年 | 118篇 |
1982年 | 54篇 |
1981年 | 23篇 |
1980年 | 20篇 |
1979年 | 18篇 |
1976年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
181.
Triose phosphate isomerase (TIM) was prepared and purified from chicken breast muscle. The equilibrium unfolding of TIM by urea was investigated by following the changes of intrinsic fluorescence and circular dichroism spectroscopy, and the equilibrium thermal unfolding by differential scanning calorimetry (DSC). Results show that the unfolding of TIM in urea is highly cooperative and no folding intermediate was detected in the experimental conditions used. The thermodynamic parameters of TIM during its urea induced unfolding were calculated as DeltaG degrees =3.54 kcal.mol(-1), and m(G) = 0.67 kcal.mol(-1)M(-1), which just reflect the unfolding of dissociated folded monomer to fully unfolded monomer transition, while the dissociation energy of folded dimer to folded monomer is probe silence. DSC results indicate that TIM unfolding follows an irreversible two-state step with a slow aggregation process. The cooperative unfolding ratio, DeltaH(cal)/DeltaH(vH), was measured close to 2, indicating that the two subunits of chicken muscle TIM unfold independently. The van't Hoff enthalpy, DeltaH(vH), was estimated as about 200 kcal.mol(-1). These results support the unfolding mechanism with a folded monomer formation before its tertiary structure and secondary structure unfolding. 相似文献
182.
Ping Xu Yangxi Zheng Jiujiang Liao Mingyu Hu Yike Yang Baozhen Zhang Mark D. Kilby Huijia Fu Yamin Liu Fumei Zhang Liling Xiong Xiyao Liu Huili Jin Yue Wu Jiayu Huang Tingli Han Li Wen Rufei Gao Yong Fu Xiujun Fan Hongbo Qi Philip N. Baker Chao Tong 《Cell proliferation》2023,56(2)
Pre‐eclampsia (PE) is deemed an ischemia‐induced metabolic disorder of the placenta due to defective invasion of trophoblasts during placentation; thus, the driving role of metabolism in PE pathogenesis is largely ignored. Since trophoblasts undergo substantial glycolysis, this study aimed to investigate its function and regulatory mechanism by AMPK in PE development. Metabolomics analysis of PE placentas was performed by gas chromatography–mass spectrometry (GC–MS). Trophoblast‐specific AMPKα1‐deficient mouse placentas were generated to assess morphology. A mouse PE model was established by Reduced Uterine Perfusion Pressure, and placental AMPK was modulated by nanoparticle‐delivered A769662. Trophoblast glucose uptake was measured by 2‐NBDG and 2‐deoxy‐d‐[3H] glucose uptake assays. Cellular metabolism was investigated by the Seahorse assay and GC–MS.PE complicated trophoblasts are associated with AMPK hyperactivation due not to energy deficiency. Thereafter, AMPK activation during placentation exacerbated PE manifestations but alleviated cell death in the placenta. AMPK activation in trophoblasts contributed to GLUT3 translocation and subsequent glucose metabolism, which were redirected into gluconeogenesis, resulting in deposition of glycogen and accumulation of phosphoenolpyruvate; the latter enhanced viability but compromised trophoblast invasion. However, ablation of AMPK in the mouse placenta resulted in decreased glycogen deposition and structural malformation. These data reveal a novel homeostasis between invasiveness and viability in trophoblasts, which is mechanistically relevant for switching between the ‘go’ and ‘grow’ cellular programs.Pre‐eclampsia (PE) is associated with trophoblast AMPK hyperactivation, presumably due to LKB1 phosphorylation, and glucose uptake is consequently increased via trafficking of GLUT3 from the cytosol to the plasma membrane. Such translocation enhances glycolytic flux and redirects glucose metabolic intermediates into gluconeogenesis, resulting in PEP accumulation, which not only benefits cell survival but also suppresses invasion by repressing MMPs, and thus in turn modulates switching between the ‘go’ and ‘grow’ cellular programs. 相似文献
183.
Cluster Computing - Data analysts predict that the GPU as a service (GPUaaS) market will grow to support 3D models, animated video processing, gaming, and deep learning model training. The main... 相似文献
184.
Purification, characterization, and cDNA cloning of a new fibrinogenlytic venom protein, Agkisacutacin, from Agkistrodon acutus venom 总被引:6,自引:0,他引:6
Cheng X Qian Y Liu Q Li BX Zhang M Liu J 《Biochemical and biophysical research communications》1999,265(2):530-535
Agkisacutacin is a new fibrinogenlytic protein from Agkistrodon acutus venom. It consists of two heterologous subunits linked by an intersubunit disulfide bond. The cDNAs encoding the two chains of Agkisacutacin were cloned from a lambdagt11 cDNA library of the snake venom gland and sequenced, including the leader peptides (23/23 amino acid residues) and mature subunits (129/123 amino acid residues). It is structurally related to the family of IX/X-binding protein (IX/X-bp)-like proteins and shows high similarity (alpha-70%/beta-64%) to habu IX/X-bp from Trimeresurus flavoridis, but displays distinct biological activity with direct action on fibrinogen. 相似文献
185.
ABSTRACT: BACKGROUND: Etoposide (epipodophyllotoxin) is a chemical commonly used as an anti-cancer drug which inhibits DNA synthesis by blocking topoisomerase II activity. Previous studies in animal cells have demonstrated that etoposide constitutes a genotoxic stress which may induce genomic instability including mobilization of normally quiescent transposable elements (TEs). However, it remained unknown whether similar genetically mutagenic effects could be imposed by etoposide in plant cells. Also, no information is available with regard to whether the drug may cause a perturbation of epigenetic stability in any organism. RESULTS: To investigate whether etoposide could generate genetic and/or epigenetic instability in plant cells, we applied etoposide to germinating seeds of six cultivated rice (Oryza sativa L.) genotypes including both subspecies, japonica and indica. Based on the methylation-sensitive gel-blotting results, epigenetic changes in DNA methylation of three TEs (Tos17, Osr23 and Osr36) and two protein-encoding genes (Homeobox and CDPK-related genes) were detected in the etoposide-treated plants (S0 generation) in four of the six studied japonica cultivars, Nipponbare, RZ1, RZ2, and RZ35, but not in the rest japonica cultivar (Matsumae) and the indica cultivar (93-11). DNA methylation changes in the etoposide-treated S0 rice plants were validated by bisulfite sequencing at both of two analyzed loci (Tos17 and Osr36). Transpositional activity was tested for eight TEs endogenous to the rice genome in both the S0 plants and their selfed progenies (S1 and S2) of one of the cultivars, RZ1, which manifested heritable phenotypic variations. Results indicated that no transposition occurred in the etoposide-treated S0 plants for any of the TEs. Nonetheless, a MITE transposon, mPing, showed rampant mobilization in the S1 and S2 progenies descended from the drug-treated S0 plants. CONCLUSIONS: Our results demonstrate that etoposide imposes a similar genotoxic stress on plant cells as it does on animal and human cells, which may induce transgenerational genomic instability by instigating transpositional activation of otherwise dormant TEs. In addition, we show for the first time that etoposide may induce epigenetic instability in the form of altered DNA methylation patterns in eukaryotes. However, penetration of the genotoxic effects of etoposide on plant cells, as being reflected as genetic and epigenetic instability, appears to be in a strictly genotype- and/or generation-dependent manner. 相似文献
186.
The Z-curve is a three-dimensional curve that constitutes a unique representation of a DNA sequence, i.e., both the Z-curve and the given DNA sequence can be uniquely reconstructed from the other. We employed Z-curve analysis to identify one replication origin in the Methanocaldococcus jannaschii genome, two replication origins in the Halobacterium species NRC-1 genome and one replication origin in the Methanosarcina mazei genome. One of the predicted replication origins of Halobacterium species NRC-1 is the same as a replication origin later identified by in vivo experiments. The Z-curve analysis of the Sulfolobus solfataricus P2 genome suggested the existence of three replication origins, which is also consistent with later experimental results. This review aims to summarize applications of the Z-curve in identifying replication origins of archaeal genomes, and to provide clues about the locations of as yet unidentified replication origins of the Aeropyrum pernix K1, Methanococcus maripaludis S2, Picrophilus torridus DSM 9790 and Pyrobaculum aerophilum str. IM2 genomes. 相似文献
187.
Regulated cell polarity is central to many cellular processes. We investigated the mechanisms that govern the rapid switching of cell polarity (reversals) during motility of the bacterium Myxococcus xanthus. Cellular reversals are mediated by pole-to-pole oscillations of motility proteins and the frequency of the oscillations is under the control of the Frz chemosensory system. However, the molecular mechanism that creates dynamic polarity remained to be characterized. In this work, we establish that polarization is regulated by the GTP cycle of a Ras-like GTPase, MglA. We initially sought an MglA regulator and purified a protein, MglB, which was found to activate GTP hydrolysis by MglA. Using live fluorescence microscopy, we show that MglA and MglB localize at opposite poles and oscillate oppositely when cells reverse. In absence of MglB, MglA-YFP accumulates at the lagging cell end, leading to a strikingly aberrant reversal cycle. Spatial control of MglA is achieved through the GAP activity of MglB because an MglA mutant that cannot hydrolyze GTP accumulates at the lagging cell end, despite the presence of MglB. Genetic and cell biological studies show that the MglA-GTP cycle controls dynamic polarity and the reversal switch. The study supports a model wherein a chemosensory signal transduction system (Frz) activates reversals by relieving a spatial inhibition at the back pole of the cells: reversals are allowed by Frz-activated switching of MglB to the opposite pole, allowing MglA-GTP to accumulate at the back of the cells and create the polarity switch. In summary, our results provide insight into how bacteria regulate their polarity dynamically, revealing unsuspected conserved regulations with eukaryots. 相似文献
188.
189.
Taurine transporter is expressed in vascular smooth muscle cells 总被引:2,自引:0,他引:2
Summary. The regulation of vascular smooth muscle cells (VSMCs) function by taurine has been a subject of increasing interest and investigation,
and taurine is taken up into cells through a specific transporter system, the taurine transporter (TAUT). In the present study,
we examined the expression of TAUT in VSMCs and the kinetic parameters of the uptake process of TAUT in VSMCs. RT-PCR and
western blot demonstrated that the mRNA and protein of TAUT was expressed in VSMCs in vitro. Immunohistochemistry using antibody
for TAUT revealed the expression of this protein in rat thoracic aorta. The maximal [3H]taurine uptake rate in VSMCs was 37.75 ± 3.13 pmol/min per mg of protein, with a K
m
value of 5.42 ± 0.81 μM. Thus, VSMCs are able to express a functional taurine transporter. The regulation and detailed function
of taurine and TAUT in VSMCs remain unclear, but our findings suggest a functional role for them in VSMCs metabolism. 相似文献
190.