首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4038篇
  免费   397篇
  国内免费   294篇
  2024年   10篇
  2023年   36篇
  2022年   80篇
  2021年   161篇
  2020年   108篇
  2019年   161篇
  2018年   149篇
  2017年   131篇
  2016年   173篇
  2015年   276篇
  2014年   293篇
  2013年   310篇
  2012年   390篇
  2011年   342篇
  2010年   228篇
  2009年   197篇
  2008年   246篇
  2007年   213篇
  2006年   173篇
  2005年   141篇
  2004年   143篇
  2003年   130篇
  2002年   120篇
  2001年   69篇
  2000年   52篇
  1999年   56篇
  1998年   28篇
  1997年   21篇
  1996年   24篇
  1995年   16篇
  1994年   21篇
  1993年   21篇
  1992年   22篇
  1991年   16篇
  1990年   17篇
  1989年   9篇
  1988年   13篇
  1987年   10篇
  1986年   16篇
  1985年   6篇
  1984年   12篇
  1983年   11篇
  1982年   5篇
  1981年   5篇
  1980年   7篇
  1979年   4篇
  1978年   6篇
  1976年   8篇
  1975年   10篇
  1974年   9篇
排序方式: 共有4729条查询结果,搜索用时 31 毫秒
91.

Background

Hematopoietic stem cell (HSC) regulation is highly dependent on interactions with the marrow microenvironment, of which osteogenic cells play a crucial role. While evidence is accumulating for an important role of intrinsic miR-17 in regulating HSCs and HPCs, whether miR-17 signaling pathways are also necessary in the cell-extrinsic control of hematopoiesis hereto remains poorly understood.

Methodology/Principal Findings

Using the immortalized clone with the characteristics of osteoblasts, FBMOB-hTERT, in vitro expansion, long-term culture initiating cell (LTC-IC) and non-obese diabetic/severe combined immunodeficient disease (NOD/SCID) mice repopulating cell (SRC) assay revealed that the ectopic expression of miR-17 partly promoted the ability of FBMOB-hTERT to support human cord blood (CB) CD34+ cell expansion and maintain their multipotency. It also seemed that osteoblastic miR-17 was prone to cause a specific expansion of the erythroid lineage. Conversely, deficient expression of miR-17 partly inhibited the hematopoietic supporting ability of FBMOB-hTERT. We further identified that HIF-1α is responsible for, at least in part, the promoted hematopoietic supporting ability of FBMOB-hTERT caused by miR-17. HIF-1α expression is markedly enhanced in miR-17 overexpressed FBMOB-hTERT upon interaction with CB CD34+ cells compared to other niche associated factors. More interestingly, the specific erythroid lineage expansion of CB CD34+ cells caused by osteoblastic miR-17 was abrogated by HIF-1α knock down.

Conclusion/Significance

Our data demonstrated that CB CD34+ cell expansion can be partly promoted by osteoblastic miR-17, and in particular, ectopic miR-17 can cause a specific expansion of the erythroid lineage through augmenting HIF-1α in osteoblasts.  相似文献   
92.

Background

The human 8-oxoguanine DNA glycosylase 1 (hOGG1), apurinic/apyrimidinic endonuclease 1 (APE1), and adenosine diphosphate ribosyl transferase (ADPRT) genes play an important role in the DNA base excision repair pathway. Single nucleotide polymorphisms (SNPs) in critical genes are suspected to be associated with the risk of lung cancer. This study aimed to identify the association between the polymorphisms of hOGG1 Ser326Cys, APE1 Asp148Glu, and ADPRT Val762Ala, and the risk of lung adenocarcinoma in the non-smoking female population, and investigated the interaction between genetic polymorphisms and environmental exposure in lung adenocarcinoma.

Methods

We performed a hospital-based case-control study, including 410 lung adenocarcinoma patients and 410 cancer-free hospital control subjects who were matched for age. Each case and control was interviewed to collect information by well-trained interviewers. A total of 10 ml of venous blood was collected for genotype testing. Three polymorphisms were analyzed by the polymerase chain reaction-restriction fragment length polymorphism technique.

Results

We found that individuals who were homozygous for the variant hOGG1 326Cys/Cys showed a significantly increased risk of lung adenocarcinoma (OR = 1.54; 95% CI: 1.01–2.36; P = 0.045). When the combined effect of variant alleles was analyzed, we found an increased OR of 1.89 (95% CI: 1.24–2.88, P = 0.003) for lung adenocarcinoma individuals with more than one homozygous variant allele. In stratified analyses, we found that the OR for the gene-environment interaction between Ser/Cys and Cys/Cys genotypes of hOGG1 codon 326 and cooking oil fumes for the risk of lung adenocarcinoma was 1.37 (95% CI: 0.77–2.44; P = 0.279) and 2.79 (95% CI: 1.50–5.18; P = 0.001), respectively.

Conclusions

The hOGG1 Ser326Cys polymorphism might be associated with the risk of lung adenocarcinoma in Chinese non-smoking females. Furthermore, there is a significant gene-environment association between cooking oil fumes and hOGG1 326 Cys/Cys genotype in lung adenocarcinoma among female non-smokers.  相似文献   
93.
Genome-wide association studies (GWAS) simultaneously investigating hundreds of thousands of single nucleotide polymorphisms (SNP) have become a powerful tool in the investigation of new disease susceptibility loci. Haplotypes are sometimes thought to be superior to SNPs and are promising in genetic association analyses. The application of genome-wide haplotype analysis, however, is hindered by the complexity of haplotypes themselves and sophistication in computation. We systematically analyzed the haplotype effects for breast cancer risk among 5,761 African American women (3,016 cases and 2,745 controls) using a sliding window approach on the genome-wide scale. Three regions on chromosomes 1, 4 and 18 exhibited moderate haplotype effects. Furthermore, among 21 breast cancer susceptibility loci previously established in European populations, 10p15 and 14q24 are likely to harbor novel haplotype effects. We also proposed a heuristic of determining the significance level and the effective number of independent tests by the permutation analysis on chromosome 22 data. It suggests that the effective number was approximately half of the total (7,794 out of 15,645), thus the half number could serve as a quick reference to evaluating genome-wide significance if a similar sliding window approach of haplotype analysis is adopted in similar populations using similar genotype density.  相似文献   
94.
Clonorchis sinensis, an ancient parasite that infects a number of piscivorous mammals, attracts significant public health interest due to zoonotic exposure risks in Asia. The available studies are insufficient to reflect the prevalence, geographic distribution, and intraspecific genetic diversity of C. sinensis in endemic areas. Here, a multilocus analysis based on eight genes (ITS1, act, tub, ef-1a, cox1, cox3, nad4 and nad5 [4.986 kb]) was employed to explore the intra-species genetic construction of C. sinensis in China. Two hundred and fifty-six C. sinensis isolates were obtained from environmental reservoirs from 17 provinces of China. A total of 254 recognized Multilocus Types (MSTs) showed high diversity among these isolates using multilocus analysis. The comparison analysis of nuclear and mitochondrial phylogeny supports separate clusters in a nuclear dendrogram. Genetic differentiation analysis of three clusters (A, B, and C) showed low divergence within populations. Most isolates from clusters B and C are geographically limited to central China, while cluster A is extraordinarily genetically diverse. Further genetic analyses between different geographic distributions, water bodies and hosts support the low population divergence. The latter haplotype analyses were consistent with the phylogenetic and genetic differentiation results. A recombination network based on concatenated sequences showed a concentrated linkage recombination population in cox1, cox3, nad4 and nad5, with spatial structuring in ITS1. Coupled with the history record and archaeological evidence of C. sinensis infection in mummified desiccated feces, these data point to an ancient origin of C. sinensis in China. In conclusion, we present a likely phylogenetic structure of the C. sinensis population in mainland China, highlighting its possible tendency for biogeographic expansion. Meanwhile, ITS1 was found to be an effective marker for tracking C. sinensis infection worldwide. Thus, the present study improves our understanding of the global epidemiology and evolution of C. sinensis.  相似文献   
95.

Background

Helical tomotherapy (HT) and volumetric modulated arc therapy (VMAT) are both advanced techniques of delivering intensity-modulated radiotherapy (IMRT). Here, we conduct a study to compare HT and partial-arc VMAT in their ability to spare organs at risk (OARs) when stereotactic ablative radiotherapy (SABR) is delivered to treat centrally located early stage non-small-cell lung cancer or lung metastases.

Methods

12 patients with centrally located lung lesions were randomly chosen. HT, 2 & 8 arc (Smart Arc, Pinnacle v9.0) plans were generated to deliver 70 Gy in 10 fractions to the planning target volume (PTV). Target and OAR dose parameters were compared. Each technique’s ability to meet dose constraints was further investigated.

Results

HT and VMAT plans generated essentially equivalent PTV coverage and dose conformality indices, while a trend for improved dose homogeneity by increasing from 2 to 8 arcs was observed with VMAT. Increasing the number of arcs with VMAT also led to some improvement in OAR sparing. After normalizing to OAR dose constraints, HT was found to be superior to 2 or 8-arc VMAT for optimal OAR sparing (meeting all the dose constraints) (p = 0.0004). All dose constraints were met in HT plans. Increasing from 2 to 8 arcs could not help achieve optimal OAR sparing for 4 patients. 2/4 of them had 3 immediately adjacent structures.

Conclusion

HT appears to be superior to VMAT in OAR sparing mainly in cases which require conformal dose avoidance of multiple immediately adjacent OARs. For such cases, increasing the number of arcs in VMAT cannot significantly improve OAR sparing.  相似文献   
96.
Turtle barnacles are common epibionts on marine organisms. Chelonibia testudinaria is specific on marine turtles whereas C. patula is a host generalist, but rarely found on turtles. It has been questioned why C. patula, being abundant on a variety of live substrata, is almost absent from turtles. We evaluated the genetic (mitochondrial COI, 16S and 12S rRNA, and amplified fragment length polymorphism (AFLP)) and morphological differentiation of C. testudinaia and C. patula from different hosts, to determine the mode of adaptation exhibited by Chelonibia species on different hosts. The two taxa demonstrate clear differences in shell morphology and length of 4–6th cirri, but very similar in arthropodal characters. Moreover, we detected no genetic differentiation in mitochondrial DNA and AFLP analyses. Outlier detection infers insignificant selection across loci investigated. Based on combined morphological and molecular evidence, we proposed that C. testudinaria and C. patula are conspecific, and the two morphs with contrasting shell morphologies and cirral length found on different host are predominantly shaped by developmental plasticity in response to environmental setting on different hosts. Chelonibia testudinaria is, thus, a successful general epibiotic fouler and the phenotypic responses postulated can increase the fitness of the animals when they attach on hosts with contrasting life-styles.  相似文献   
97.
Peristaltic contraction of the embryonic heart tube produces time- and spatial-varying wall shear stress (WSS) and pressure gradients (∇P) across the atrioventricular (AV) canal. Zebrafish (Danio rerio) are a genetically tractable system to investigate cardiac morphogenesis. The use of Tg(fli1a:EGFP)y1 transgenic embryos allowed for delineation and two-dimensional reconstruction of the endocardium. This time-varying wall motion was then prescribed in a two-dimensional moving domain computational fluid dynamics (CFD) model, providing new insights into spatial and temporal variations in WSS and ∇P during cardiac development. The CFD simulations were validated with particle image velocimetry (PIV) across the atrioventricular (AV) canal, revealing an increase in both velocities and heart rates, but a decrease in the duration of atrial systole from early to later stages. At 20-30 hours post fertilization (hpf), simulation results revealed bidirectional WSS across the AV canal in the heart tube in response to peristaltic motion of the wall. At 40-50 hpf, the tube structure undergoes cardiac looping, accompanied by a nearly 3-fold increase in WSS magnitude. At 110-120 hpf, distinct AV valve, atrium, ventricle, and bulbus arteriosus form, accompanied by incremental increases in both WSS magnitude and ∇P, but a decrease in bi-directional flow. Laminar flow develops across the AV canal at 20-30 hpf, and persists at 110-120 hpf. Reynolds numbers at the AV canal increase from 0.07±0.03 at 20-30 hpf to 0.23±0.07 at 110-120 hpf (p< 0.05, n=6), whereas Womersley numbers remain relatively unchanged from 0.11 to 0.13. Our moving domain simulations highlights hemodynamic changes in relation to cardiac morphogenesis; thereby, providing a 2-D quantitative approach to complement imaging analysis.  相似文献   
98.

Snapdragon (Antirrhinum majus L.) is a popular ornamental and model plant species, and the recently released reference genome could greatly boost its utilization in fundamental research. However, the lack of an efficient genetic transformation system is still a major limiting factor for its full application in genetic and molecular studies. In this study, a simple method for quick regeneration and efficient Agrobacterium-mediated transformation of snapdragon was developed. Cotyledon petiole and hypocotyl explants derived from two-week-old seedlings were cultured on MS media supplemented with 2 mg/L zeatin (ZT), 0.2 mg/L 1-naphthaleneacetic acid (NAA), and 2 mg/L AgNO3, and adventitious shoots were regenerated through organogenesis with an average regeneration of 48.00% and 41.33%, respectively. By contrast, the regeneration frequency was only 22.67% for cotyledon petiole and 25.67% for hypocotyl explants in the absence of AgNO3. Moreover, the application of AgNO3 promoted indirect shoot organogenesis, while direct shoot organogenesis occurred in the absence of AgNO3 from both hypocotyl or cotyledon petiole explants. Agrobacterium-mediated genetic transformation systems were developed with this high-efficient regeneration system. The transformation efficiency has been improved from 0 to 1% through the direct shoot organogenesis to 3 to 4% via the indirect shoot organogenesis. This efficient regeneration and genetic transformation method could be important for future use of snapdragon as a model plant to address some fundamental questions which are hard to be solved by using other model plant species, and to accelerate the breeding process through CRISPR/Cas9 genome editing.

  相似文献   
99.
MicroRNA-132 (miR-132) has been shown to participate in many diseases. This study aimed to understand the correlation between the level of miR-132 and the severity of dementia post-ischemic stroke. An online tool ( www.mirdb.org ) was used to find the miR-132 binding site in acetylcholinesterase (ACHE) 3′-untranslated region (UTR), followed by a luciferase reporter assay to validate ACHE as a miR-132 target. A similar relationship between miR-132 and ACHE was also established in cerebrospinal fluid samples collected from human subjects. A negative correlation was established between ACHE and miR-132 by measuring the relative luciferase activity. Meanwhile, Western blot analysis and real-time polymerase chain reaction were also conducted to compare the levels of ACHE messenger RNA and protein between two groups (dementia positive, n = 26 and dementia negative, n = 26) or among cells treated with miR-132 mimics, ACHE small interfering RNA, and miR-132 inhibitors. As shown in the results, miR-132 can reduce the expression of ACHE. Further experiments were also carried out to study the effect of miR-132 and ACHE on cell viability and apoptosis, and the results demonstrated that miR-132 enhanced cell viability while suppressing apoptosis. In addition, ACHE reduced cell viability while promoting apoptosis. miR-132 targeted ACHE and suppressed its expression. Additionally, miR-132 and ACHE have been shown to affect the cell viability and apoptosis in the central nervous system.  相似文献   
100.
Porphyromonas gingivalis, as a major pathogen of periodontitis, could rapidly adhere to and invade host gingival epithelial cells (GECs) for the induction of infection. One ATP-binding cassette (ABC) transporter gene was found to be upregulated during this infection process, however, the molecular mechanisms remain unclear. In this study, we systemically investigated the messenger RNA level changes of all ABC transporter family genes in P. gingivalis while being internalized within GECs by real-time polymerase chain reaction. We identified that two ABC transporter genes, PG_RS04465 (PG1010) and PG_RS07320 (PG1665), were significantly increased in P. gingivalis after coculturing with GECs. Mutant strains with knockout (KO) of these two genes were generated by homogenous recombination. PG_RS04465 and PG_RS07320 KO mutants showed no change in the growth of bacteria per se. Knockdown of PG_RS07320, but not PG_RS04465, caused decreased endotoxin level in the bacteria. In contrast, both mutant strains showed decreased Arg- and Lys-gingipains activities, with significantly reduced adhesion and invasion capabilities. Secreted interleukin-1β (IL-1β) and IL-6 levels in GECs cocultured with PG_RS04465 or PG_RS07320 KO mutants were also decreased, whereas, only the cells cocultured with PG_RS07320 KO mutants showed significant decrease. In addition, virulence study using mouse revealed that both KO mutant strains infection caused less mouse death than wild-type strains, showing reduced virulence of two KO strains. These results indicated that ABC transporter genes PG_RS04465 and PG_RS07320 are positive regulators of the virulence of P. gingivalis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号