首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13376篇
  免费   866篇
  国内免费   3篇
  14245篇
  2022年   81篇
  2021年   138篇
  2019年   93篇
  2018年   126篇
  2017年   107篇
  2016年   197篇
  2015年   313篇
  2014年   345篇
  2013年   781篇
  2012年   642篇
  2011年   593篇
  2010年   325篇
  2009年   369篇
  2008年   575篇
  2007年   565篇
  2006年   570篇
  2005年   572篇
  2004年   601篇
  2003年   578篇
  2002年   534篇
  2001年   541篇
  2000年   528篇
  1999年   435篇
  1998年   167篇
  1997年   154篇
  1996年   139篇
  1995年   108篇
  1994年   123篇
  1993年   125篇
  1992年   328篇
  1991年   305篇
  1990年   308篇
  1989年   282篇
  1988年   238篇
  1987年   238篇
  1986年   211篇
  1985年   181篇
  1984年   136篇
  1983年   131篇
  1982年   114篇
  1981年   107篇
  1980年   89篇
  1979年   113篇
  1978年   91篇
  1977年   80篇
  1976年   81篇
  1975年   71篇
  1974年   86篇
  1973年   93篇
  1971年   67篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
971.
972.
Several previous studies have shown that renal failure decreases not only renal elimination but also metabolic clearance of drugs, particularly those metabolized by CYP3A. However, whether recovery of renal function results in recovery of hepatic CYP3A activity remains unknown. In this study, we evaluated the effect of renal function on CYP3A activity after kidney transplantation in patients with end-stage renal disease (ESRD) by measuring the change in CYP3A activity using plasma concentration of 4β-hydroxycholesterol as a biomarker. The study enrolled 13 patients with ESRD who underwent the first kidney allograft transplantation. Morning blood samples were collected before and 3, 7, 10, 14, 21, 30, 60, 90, 120, 150 and 180 days after kidney transplantation. Plasma concentration of 4β-hydroxycholesterol was measured using GC-MS. Compared with before kidney transplantation, creatinine clearance increased significantly from day 3 after kidney transplantation and stabilized thereafter. Plasma concentration of 4β-hydroxycholesterol was elevated significantly on days 90 and 180 after kidney transplantation. In conclusion, this study suggests the recovery of CYP3A activity with improvement in renal function after kidney transplantation in patients with ESRD.  相似文献   
973.
Sarcoplasmic reticulum Ca2+-ATPase couples the motions and rearrangements of three cytoplasmic domains (A, P, and N) with Ca2+ transport. We explored the role of electrostatic force in the domain dynamics in a rate-limiting phosphoenzyme (EP) transition by a systematic approach combining electrostatic screening with salts, computer analysis of electric fields in crystal structures, and mutations. Low KCl concentration activated and increasing salt above 0.1 m inhibited the EP transition. A plot of the logarithm of the transition rate versus the square of the mean activity coefficient of the protein gave a linear relationship allowing division of the activation energy into an electrostatic component and a non-electrostatic component in which the screenable electrostatic forces are shielded by salt. Results show that the structural change in the transition is sterically restricted, but that strong electrostatic forces, when K+ is specifically bound at the P domain, come into play to accelerate the reaction. Electric field analysis revealed long-range electrostatic interactions between the N and P domains around their hinge. Mutations of the residues directly involved and other charged residues at the hinge disrupted in parallel the electric field and the structural transition. Favorable electrostatics evidently provides a low energy path for the critical N domain motion toward the P domain, overcoming steric restriction. The systematic approach employed here is, in general, a powerful tool for understanding the structural mechanisms of enzymes.  相似文献   
974.

Background

The precise mechanisms of the neuroprotective effects of insulin in streptozotocin (STZ)-induced diabetic animals remain unknown, but altered peripheral nerve insulin receptor signaling due to insulin deficiency might be one cause.

Methodology and Principal Findings

Diabetes was induced in 10-week-old, male Wistar rats by injecting them with STZ (45 mg/kg). They were assigned to one group that received half of an insulin implant (∼1 U/day; I-group, n = 11) or another that remained untreated (U-group, n = 10) for 6 weeks. The controls were age- and sex-matched, non-diabetic Wistar rats (C-group, n = 12). Low-dose insulin did not change haemoglobin A1c, which increased by 136% in the U-group compared with the C-group. Thermal hypoalgesia and mechanical hyperalgesia developed in the U-group, but not in the I-group. Sensory and motor nerve conduction velocities decreased in the U-group, whereas sensory nerve conduction velocity increased by 7% (p = 0.0351) in the I-group compared with the U-group. Western blots showed unaltered total insulin receptor (IR), but a 31% decrease and 3.1- and 4.0-fold increases in phosphorylated IR, p44, and p42 MAPK protein levels, respectively, in sciatic nerves from the U-group compared with the C-group. Phosphorylated p44/42 MAPK protein decreased to control levels in the I-group (p<0.0001).

Conclusions and Significance

Low-dose insulin deactivated p44/42 MAPK and ameliorated peripheral sensory nerve dysfunction in rats with STZ-induced diabetes. These findings support the notion that insulin deficiency per se introduces impaired insulin receptor signaling in type 1 diabetic neuropathy.  相似文献   
975.
976.
A case of obsolete intramuscular cysticercosis diagnosed definitively by mitochondrial DNA analysis of extremely calcified cysts was reported. X-ray and computed tomography findings highly suggested cysticercosis due to Taenia solium; however, no direct evidence of cysticercosis was obtained through serological or histopathological examinations. Mitochondrial DNA analysis of a histopathological specimen confirmed the causative agent to be the Asian genotype of T. solium.  相似文献   
977.
The increasing popularity of conditional knockout (KO) technology has resulted in the demand for efficient FLP deleter mice. In addition, FLP deleters are needed in genetic backgrounds that are suited to behavioral studies. We generated CAG-FLPe transgenic (Tg) mice with the C57BL/6J genetic background, which is one of the most commonly-used strains in behavioral studies. We assessed the recombination efficiency of the CAG-FLPe-Tg lines by crossing them with a mouse line carrying a FRT-PGK-neo-FRT cassette. Four of five independent CAG-FLPe lines induced recombination in most (91%-100%) of their progenies, although a small fraction (0%-30%, depending on the line) showed mosaic recombination patterns. These animals are highly potent as deleters of FRT cassettes and are useful for behavioral studies involving conditional KO mice.  相似文献   
978.
Severe stress decreases the resistance of hosts exposed to microbial infections. As compared with two groups of control mice (normal mice, food-and-water-deprived mice [FWD mice]), restraint-stressed mice (RST mice) were shown to be greatly susceptible to intracerebral growth of Cryptococcus neoformans. The susceptibility of FWD mice to cerebral cryptococcosis increased to the level shown in RST mice, when these groups of mice were inoculated with microglial cells from the brains of RST mice. However, the susceptibility of FWD mice to cerebral cryptococcosis was not influenced by the adoptive transfer of microglial cells from normal mice or FWD mice. Microglial cells from RST mice produced CC-chemokine ligand-2 (CCL-2/monocyte chemoattractant protein 1), but not microglial cells from FWD mice. The resistance of RST mice to cerebral cryptococcosis was improved to the extent shown in FWD mice, when they were treated with anti-CCL-2 antibody. However, the susceptibility of normal mice and FWD mice to cerebral cryptococcosis increased to that shown in RST mice, when they were treated with rCCL-2. Microglial cells from RST mice were discriminated from the same cell preparations derived from FWD mice by their abilities to produce CCL-2, to phagocytize C. neoformans cells and to express Toll-like receptor 2. These results indicate that the resistance of RST mice to cerebral cryptococcosis is diminished by CCL-2 produced by microglial cells that are influenced by restraint stress.  相似文献   
979.
We recently found that human immunodeficiency virus (HIV)-specific CD4+ T cells express coreceptor CCR5 and activation antigen CD38 during early primary HIV-1 infection (PHI) but then rapidly disappear from the circulation. This cell loss may be due to susceptibility to infection with HIV-1 but could also be due to inappropriate apoptosis, an expansion of T regulatory cells, trafficking out of the circulation, or dysfunction. We purified CD38+++CD4+ T cells from peripheral blood mononuclear cells, measured their level of HIV-1 DNA by PCR, and found that about 10% of this population was infected. However, a small subset of HIV-specific CD4+) T cells also expressed CD127, a marker of long-term memory cells. Purified CD127+CD4+ lymphocytes contained fivefold more copies of HIV-1 DNA per cell than did CD127-negative CD4+ cells, suggesting preferential infection of long-term memory cells. We observed no apoptosis of antigen-specific CD4+ T cells in vitro and only a small increase in CD45RO+CD25+CD127dimCD4+ T regulatory cells during PHI. However, 40% of CCR5+CD38+++ CD4+ T cells expressed gut-homing integrins, suggesting trafficking through gut-associated lymphoid tissue (GALT). Furthermore, 80% of HIV-specific CD4+ T cells expressed high levels of the negative regulator CTLA-4 in response to antigen stimulation in vitro, which was probably contributing to their inability to produce interleukin-2 and proliferate. Taken together, the loss of HIV-specific CD4+ T cells is associated with a combination of an infection of CCR5+ CD127+ memory CD4+ T cells, possibly in GALT, and a high expression of the inhibitory receptor CTLA-4.  相似文献   
980.
The axon initial segment (AIS) is a specialized domain essential for neuronal function, the formation of which begins with localization of an ankyrin-G (AnkG) scaffold. However, the mechanism directing and maintaining AnkG localization is largely unknown. In this study, we demonstrate that in vivo knockdown of microtubule cross-linking factor 1 (MTCL1) in cerebellar Purkinje cells causes loss of axonal polarity coupled with AnkG mislocalization. MTCL1 lacking MT-stabilizing activity failed to restore these defects, and stable MT bundles spanning the AIS were disorganized in knockdown cells. Interestingly, during early postnatal development, colocalization of MTCL1 with these stable MT bundles was observed prominently in the axon hillock and proximal axon. These results indicate that MTCL1-mediated formation of stable MT bundles is crucial for maintenance of AnkG localization. We also demonstrate that Mtcl1 gene disruption results in abnormal motor coordination with Purkinje cell degeneration, and provide evidence suggesting possible involvement of MTCL1 dysfunction in the pathogenesis of spinocerebellar ataxia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号