首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   327篇
  免费   18篇
  345篇
  2023年   2篇
  2022年   8篇
  2021年   7篇
  2020年   5篇
  2019年   7篇
  2018年   6篇
  2017年   14篇
  2016年   16篇
  2015年   16篇
  2014年   27篇
  2013年   37篇
  2012年   26篇
  2011年   29篇
  2010年   14篇
  2009年   8篇
  2008年   14篇
  2007年   17篇
  2006年   13篇
  2005年   18篇
  2004年   2篇
  2003年   25篇
  2002年   10篇
  2001年   5篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1993年   1篇
  1992年   2篇
  1990年   2篇
  1989年   3篇
  1985年   1篇
排序方式: 共有345条查询结果,搜索用时 15 毫秒
121.
Photolabile derivatives of bile acids (8-10 and 13) were synthesized via silver (I) oxide promoted selective etherification of 3alpha-hydroxyls. Quantitative production of the parent cholic acid was detected from the photolytic mixture of 3-NB-CA (8) in Tris buffered solution. Interestingly, the unexpectedly stable nitroso-hemiacetal intermediate (14) was detected when the photolysis was conducted in methanol. The enzymatic analysis using 7alpha-HSDH showed 8 and 9 could serve as caged bile acids that might be able to regulate certain biological processes upon UV irradiation.  相似文献   
122.
PPM1D is a p53-inducible Ser/Thr protein phosphatase. PPM1D gene amplification and overexpression have been reported in a variety of human tumors, including breast cancer and neuroblastoma. Because the phosphatase activity of PPM1D is essential for its oncogenic role, PPM1D inhibitors should be viable anti-cancer agents. In our current study, we showed that SPI-001 was a potent and specific PPM1D inhibitor. SPI-001 inhibited PPM1D phosphatase activity in PPM1D-overexpressing human breast cancer cells and increased phosphorylation of p53. Furthermore, SPI-001 suppressed cell proliferation by inducing apoptosis. Our present study suggested that SPI-001 was a potential lead compound in developing anti-cancer drugs.  相似文献   
123.
We developed a system for bioconverting diverse compounds using P450s produced in Escherichia coli. Vectors for the expressing various P450 cDNAs quickly and easily in E. coli were developed by using several restriction enzyme sites. Three types of P450 (2C2, 2C29, and 2D22) were produced using these plasmids. Substrates were directly added to the incubation medium and metabolized. To obtain pure product from the medium, we first tried production of P450 in synthetic medium. The amount of another P450 2C43 produced in the synthetic medium was similar to the amount produced in Luria broth (LB) medium. Next, estradiol, a steroid, was added as a substrate, incubated, and the metabolite was extracted and analyzed by high-performance liquid chromatography. The metabolite extracted from synthetic medium was purer than that obtained from LB medium. Three P450s (2C29, 2C2, and 2A4) metabolized testosterone at different positions. P450 2C29 metabolized 7-ethoxycoumarin, androstendione, and dehydroepiandrosterone in this medium. P450s produced in the synthetic medium may be useful for producing various modified compounds for high-throughput screening.  相似文献   
124.
Lanostane triterpenoids from the inedible mushroom Fomitopsis spraguei   总被引:1,自引:0,他引:1  
Investigation of the methanolic extract of the inedible mushroom Fomitopsis spraguei (Polyporaceae) led to the isolation of five lanostane-type triterpenoids (1-5): three new compounds named fomitopsins A-C (2-4), and two known compounds, quercinic acid C (1) and 3alpha-carboxyacetyl-12beta-hydroxyquercinic acid (5). Their structures were determined by 2D NMR, MS, IR, UV spectra, and X-ray crystallographic analyses. An X-ray crystal structure analysis of quercinic acid C (1) established its stereochemistry as 3R,12R-dihydroxy-24R-methyl-23-oxo-25S-lanost-8-en-26-oic acid.  相似文献   
125.
l-Hydroxyproline (4-hydroxyproline) mainly exists in collagen, and most bacteria cannot metabolize this hydroxyamino acid. Pseudomonas putida and Pseudomonas aeruginosa convert l-hydroxyproline to α-ketoglutarate via four hypothetical enzymatic steps different from known mammalian pathways, but the molecular background is rather unclear. Here, we identified and characterized for the first time two novel enzymes, d-hydroxyproline dehydrogenase and Δ1-pyrroline-4-hydroxy-2-carboxylate (Pyr4H2C) deaminase, involved in this hypothetical pathway. These genes were clustered together with genes encoding other catalytic enzymes on the bacterial genomes. d-Hydroxyproline dehydrogenases from P. putida and P. aeruginosa were completely different from known bacterial proline dehydrogenases and showed similar high specificity for substrate (d-hydroxyproline) and some artificial electron acceptor(s). On the other hand, the former is a homomeric enzyme only containing FAD as a prosthetic group, whereas the latter is a novel heterododecameric structure consisting of three different subunits (α4β4γ4), and two FADs, FMN, and [2Fe-2S] iron-sulfur cluster were contained in αβγ of the heterotrimeric unit. These results suggested that the l-hydroxyproline pathway clearly evolved convergently in P. putida and P. aeruginosa. Pyr4H2C deaminase is a unique member of the dihydrodipicolinate synthase/N-acetylneuraminate lyase protein family, and its activity was competitively inhibited by pyruvate, a common substrate for other dihydrodipicolinate synthase/N-acetylneuraminate lyase proteins. Furthermore, disruption of Pyr4H2C deaminase genes led to loss of growth on l-hydroxyproline (as well as d-hydroxyproline) but not l- and d-proline, indicating that this pathway is related only to l-hydroxyproline degradation, which is not linked to proline metabolism.  相似文献   
126.
Overexpression of S-adenosylmethionine decarboxylase (SAMDC) mRNA in 1- and 2-cell stage Xenopus embryos induces cell autonomous dissociation at the late blastula stage and developmental arrest at the early gastrula stage. The induction of cell dissociation took place "punctually" at the late blastula stage in the SAMDC-overexpressing cells, irrespective of the stage of the microinjection of SAMDC mRNA. When we examined the cells undergoing the dissociation, we found that they were TUNEL-positive and contained fragmented nuclei with condensed chromatin and fragmented DNA. Furthermore, by injecting Xenopus Bcl-2 mRNA together with SAMDC mRNA, we showed that SAMDC-overexpressing embryos are rescued completely by Bcl-2 and becometadpoles. These results indicatethat cell dissociation induced by SAMDC overexpression is due to apoptotic cell death. Since the level of S-adenosylmethionine (SAM) is greatly reduced in SAMDC-overexpressing embryos and this induces inhibition of protein synthesis accompanied by the inhibition of DNA and RNA syntheses, we conclude that deficiency in SAM induced by SAMDC overexpression activates the maternal program of apoptosis in Xenopus embryos at the late blastula stage, but not before. We propose that this mechanism serves as a surveillance mechanism to check and eliminate cells physiologically damaged during the cleavage stage.  相似文献   
127.
When we studied polyamine metabolism in Xenopus embryos, we cloned the cDNA for Xenopus S-adenosylmethionine decarboxylase (SAMDC), which converts SAM (S-adenosylmethionine), the methyl donor, into decarboxylated SAM (dcSAM), the aminopropyl donor, and microinjected its in vitro transcribed mRNA into Xenopus fertilized eggs. We found here that the mRNA injection induces a SAM deficient state in early embryos due to over-function of the overexpressed SAMDC, which in turn induces inhibition of protein synthesis. Such embryos developed quite normally until blastula stage, but stopped development at the early gastrula stage, due to induction of massive cell dissociation and cell autolysis, irrespective of the dosage and stage of the mRNA injection. We found that the dissociated cells were TUNEL-positive, contained fragmented nuclei with ladder-forming DNA, and furthermore, rescued completely by coinjection of Bcl-2 mRNA. Thus, overexpression of SAMDC in Xenopus embryos appeared to switch on apoptotic program, probably via inhibition of protein synthesis. Here, we briefly review our results together with those reported from other laboratories. After discussing the general importance of this newly discovered apoptotic program, we propose that the maternal program of apoptosis serves as a surveillance mechanism to eliminate metabolically severely-damaged cells and functions as a 'fail-safe' mechanism for normal development in Xenopus embryos.  相似文献   
128.
ε-Poly-l-lysine (ε-PL), consisting of 25 to 35 l-lysine residues with linkages between the α-carboxyl groups and ε-amino groups, is produced by Streptomyces albulus NBRC14147. ε-PL synthetase (Pls) is a membrane protein with six transmembrane domains (TM1 to TM6) as well as both an adenylation domain and a thiolation domain, characteristic of the nonribosomal peptide synthetases. Pls directly generates ε-PL chain length diversity (25- to 35-mer), but the processes that control the chain length of ε-PL during the polymerization reaction are still not fully understood. Here, we report on the identification of Pls amino acid residues involved in the regulation of the ε-PL chain length. From approximately 12,000 variants generated by random mutagenesis, we found 8 Pls variants that produced shorter chains of ε-PL. These variants have one or more mutations in two linker regions connecting the TM1 and TM2 domains and the TM3 and TM4 domains. In the Pls catalytic mechanism, the growing chain of ε-PL is not tethered to the enzyme, implying that the enzyme must hold the growing chain until the polymerization reaction is complete. Our findings reveal that the linker regions are important contributors to grasp the growing chain of ε-PL.  相似文献   
129.
The dogfish (Triakis scyllia) interleukin-8 (IL-8) cDNA was isolated from mitogen-stimulated peripheral white blood cells (WBCs) utilising the polymerase chain reaction (PCR). The cDNA sequence showed that the dogfish IL-8 clones contained an open reading frame encoding 101 amino acids. A short 5' untranslated region (UTR) of 70 nucleotides and a long 3' UTR of 893 nucleotides were also present in this 1.2-kb cDNA. Furthermore, the 3' UTR of the mRNA contained the AUUUA sequence that has been implicated in shortening of the half-life of several cytokines and growth factors. The predicted IL-8 peptide had one potential N-linked glycosylation site (Asn-72-Thr-74) that is not conserved in other vertebrates. It also contained four cysteine residues (Cys-34, 36, 61 and 77), which are characteristic of CXC subfamily cytokines and found in all vertebrates, to date. The dogfish IL-8 lacked an ELR motif as found in the lamprey and trout. Comparison of the deduced amino acids showed that the dogfish IL-8 sequence shared 50.5, 41.2, 37.1 and 40.4-45.5% identity with the chicken, lamprey, trout and mammalian IL-8 sequences, respectively.  相似文献   
130.
Strategies to stimulate revascularization are valuable for cardiovascular diseases. Here we identify neuron-derived neurotrophic factor (NDNF)/epidermacan as a secreted molecule that is up-regulated in endothelial cells in ischemic limbs of mice. NDNF was secreted from cultured human endothelial cells, and its secretion was stimulated by hypoxia. NDNF promoted endothelial cell network formation and survival in vitro through activation of Akt/endothelial NOS (eNOS) signaling involving integrin αvβ3. Conversely, siRNA-mediated knockdown of NDNF in endothelial cells led to reduction of cellular responses and basal Akt signaling. Intramuscular overexpression of NDNF led to enhanced blood flow recovery and capillary density in ischemic limbs of mice, which was accompanied by enhanced phosphorylation of Akt and eNOS. The stimulatory actions of NDNF on perfusion recovery in ischemic muscles of mice were abolished by eNOS deficiency or NOS inhibition. Furthermore, siRNA-mediated reduction of NDNF in muscles of mice resulted in reduction of perfusion recovery and phosphorylation of Akt and eNOS in response to ischemia. Our data indicate that NDNF acts as an endogenous modulator that promotes endothelial cell function and ischemia-induced revascularization through eNOS-dependent mechanisms. Thus, NDNF can represent a therapeutic target for the manipulation of ischemic vascular disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号