首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3598篇
  免费   196篇
  国内免费   7篇
  2022年   15篇
  2021年   37篇
  2020年   24篇
  2019年   34篇
  2018年   54篇
  2017年   35篇
  2016年   60篇
  2015年   106篇
  2014年   115篇
  2013年   199篇
  2012年   171篇
  2011年   235篇
  2010年   135篇
  2009年   154篇
  2008年   213篇
  2007年   238篇
  2006年   224篇
  2005年   239篇
  2004年   233篇
  2003年   222篇
  2002年   225篇
  2001年   33篇
  2000年   33篇
  1999年   48篇
  1998年   61篇
  1997年   33篇
  1996年   43篇
  1995年   47篇
  1994年   37篇
  1993年   53篇
  1992年   49篇
  1991年   30篇
  1990年   35篇
  1989年   31篇
  1988年   26篇
  1987年   25篇
  1986年   27篇
  1985年   16篇
  1984年   17篇
  1983年   20篇
  1982年   15篇
  1981年   16篇
  1980年   15篇
  1979年   12篇
  1978年   14篇
  1977年   13篇
  1975年   9篇
  1968年   10篇
  1967年   8篇
  1965年   8篇
排序方式: 共有3801条查询结果,搜索用时 15 毫秒
961.
Reactive carbonyl compounds and oxidative stress have been recently shown to up-regulate the expression of heparin-binding epidermal growth factor-like growth factor (HB-EGF), a potent mitogen for vascular smooth muscle cells (SMCs) produced by SMC themselves. Because the polyol pathway has been reported to influence the formation of carbonyl compounds and the oxidative stress in various cells, we conducted this study to investigate whether the polyol pathway affects HB-EGF expression along with the generation of carbonyl compounds and the oxidative stress in SMCs. We found that, compared with those cultured with 5.5mM glucose, SMCs cultured with 40 mM glucose showed the accelerated thymidine incorporation, elevated levels of intracellular sorbitol, 3-deoxyglucosone (3-DG), advanced glycation end products (AGEs), and thiobarbituric acid-reactive substances (TBARS) along with the enhanced expression of HB-EGF mRNA. An aldose reductase inhibitor (ARI), SNK-860, significantly inhibited all of these abnormalities, while aminoguanidine suppressed 3-DG levels and HB-EGF mRNA expression independent of sorbitol levels. The results suggest that the polyol pathway may play a substantial role in SMC hyperplasia under hyperglycemic condition in part by affecting HB-EGF mRNA expression via the production of carbonyl compounds and oxidative stress.  相似文献   
962.
Chromatin state of a 2-Mb region harboring Rit1/Bcl11b on mouse chromosome 12 was examined using two distinct methods. One is ChIP assay examining the degree of enrichment with histone H3 methylated at lysine 9 (H3-mLys9) in chromatin and the other is H/E (heterochromatin/euchromatin) assay that measures a chromatin condensation state by using centrifugation. The ChIP assay showed that a 50-kb interval covering the gene and an upstream region constituted chromatin enriched with unmethylated H3-mLys9 in cells expressing Rit1 compared to cells not expressing Rit1. In contrast, regions other than the 50-kb interval did not show much difference in the enrichment between the two different types of cells. On the other hand, H/E assay of two expressing and two non-expressing tissues provided compatible fractionation patterns, suggesting that the chromatin condensation state detected by H/E assay is correlated with the chromatin state controlled by histone H3 tail modification linked to gene expression. These results indicate that the centrifugation-based H/E assay should provide a new approach to the regulation of chromatin structure with respect to its condensation state, complementing ChIP assays.  相似文献   
963.
The pentaketide 1,3,6,8-tetrahydroxynaphthalene (T4HN) is a key precursor of 1,8-dihydroxynaphthalene-melanin, an important virulence factor in pathogenic fungi, where T4HN is believed to be the direct product of pentaketide synthases. We showed recently the involvement of a novel protein, Ayg1p, in the formation of T4HN from the heptaketide precursor YWA1 in Aspergillus fumigatus. To investigate the mechanism of its enzymatic function, Ayg1p was purified from an Aspergillus oryzae strain that overexpressed the ayg1 gene. The Ayg1p converted the naphthopyrone YWA1 to T4HN with a release of the acetoacetic acid. Although Ayg1p does not show significant homology with known enzymes, a serine protease-type hydrolytic motif is present in its sequence, and serine-specific inhibitors strongly inhibited the activity. To identify its catalytic residues, site-directed Ayg1p mutants were expressed in Escherichia coli, and their enzyme activities were examined. The single substitution mutations S257A, D352A, and H380A resulted in a complete loss of enzyme activity in Ayg1p. These results indicated that the catalytic triad Asp352-His380-Ser257 constituted the active-site of Ayg1p. From a Dixon plot analysis, 2-acetyl-1,3,6,8-tetrahydroxynaphthalene was found to be a strong mixed-type inhibitor, suggesting the involvement of an acyl-enzyme intermediate. These studies support the mechanism in which the Ser257 at the active site functions as a nucleophile to attack the YWA1 side-chain 1'-carbonyl and cleave the carbon-carbon bond between the naphthalene ring and the side chain. Acetoacetic acid is subsequently released from the Ser257-O-acetoacetylated Ayg1p by hydrolysis. An enzyme with activity similar to Ayg1p in melanin biosynthesis has not been reported in any other organism.  相似文献   
964.
A biohydrogen production system coupling the polysaccharide such as sucrose and maltose degradation with invertase and glucose dehydrognase (GDH) and hydrogen production with colloidal platinum as hydrogen-evolved catalyst using the visible light-induced photosensitization of water-soluble zinc porphyrin, zinc tetraphenylporphyrin tetrasulfonate (ZnTPPS) has been investigated. Continuous hydrogen gas production was observed when the sample solution containing polysaccharide, invertase, GDH, nicotinamide adenine dinucreotide (NAD(+)), ZnTPPS, methylviologen (an electron relay reagent), and colloidal platinum was irradiated by visible light. After 240-min irradiation, the amount of hydrogen production in the system using sucrose and maltose was estimated to be 3.1 and 0.35 micromol, respectively.  相似文献   
965.
Osanai T  Kotani M  Yuen CT  Kato H  Sanai Y  Takeda S 《FEBS letters》2003,537(1-3):73-78
In an earlier study, we showed that expressions of GD3, GT1b, and GQ1b gangliosides in P19 embryonic carcinoma (EC) cells were enhanced during their neural differentiation induced by retinoic acid. We now further demonstrated that this increase of the b-series gangliosides is due to an increase in their corresponding synthases (sialyltransferase-II, -IV, and -V) in the Golgi. Of the three gangliosides studied, GQ1b appeared to be the best candidate for monitoring such differentiation process. We also used fluorescence-labeled monoclonal antibodies and confocal fluorescence microscopy to obtain direct visual information about the relationship of gangliosides and neural specific proteins in neuron development. Again, GQ1b is the most interesting as it localizes with synaptophysin and neural cell adhesion molecules (NCAMs) on synaptic boutons or dendritic spines in RA-induced neurons (R/N). This suggests that GQ1b could be used as a marker for synapse formation during construction of the neural network.  相似文献   
966.
Lysophosphatidic acid (LPA) is a bioactive lysophospholipid mediator that acts through G protein-coupled receptors. Most cell lines in culture express one or more LPA receptors, making it difficult to assign a response to specific LPA receptors. Dissection of the signaling properties of LPA has been hampered by lack of LPA receptor subtype-specific agonists and antagonists. The present study characterizes an ester-linked thiophosphate derivative (1-oleoyl-2-O-methyl-rac-glycerophosphothionate, OMPT) of LPA. OMPT is a functional LPA analogue with potent mitogenic activity in fibroblasts. In contrast to LPA, OMPT does not couple to the pheromone response through the LPA(1) receptor in yeast cells. OMPT induces intracellular calcium increases efficiently in LPA(3) receptor-expressing Sf9 cells but poorly in LPA(2) receptor-expressing cells. Guanosine 5'-O-(3-[(35)S]thio)triphosphate binding assays in mammalian cells showed that LPA exhibits agonistic activity on all three LPA receptor subtypes, whereas OMPT has a potent agonistic effect only on the LPA(3) receptor. In transiently transfected HEK293 cells, OMPT stimulates mitogen-activated protein kinases through the LPA(3) but not the LPA(1) or LPA(2) receptors. Furthermore, OMPT-induced intracellular calcium mobilization in mammalian cells is efficiently inhibited by the LPA(1)/LPA(3) receptor-selective antagonist VPC12249. These results establish that OMPT is an LPA(3)-selective agonist. OMPT binding to the LPA(3) receptor in mammalian cells is sufficient to elicit multiple responses, including activation of G proteins, calcium mobilization, and activation of mitogen-activated protein kinases. Thus OMPT offers a powerful probe for the dissection of LPA signaling events in complex mammalian systems.  相似文献   
967.
968.
Ito I  Watanabe S  Kimura T  Kirino Y  Ito E 《Zoological science》2003,20(11):1337-1346
The tentacular ganglion, the primary olfactory system of terrestrial slugs, exhibits spontaneous oscillations with a spatial coherence. The digit-like extensions (digits) of the tentacular ganglion presumably house the cell bodies of the neurons underlying the oscillations. The present study was designed to identify the anatomical and physiological determinants of these oscillations with a special focus on whether the neurons located in the digits contribute to the coherent oscillations. We recorded field potentials from the spatially separated sites in the digits in the terrestrial slug Limax marginatus. We also simultaneously recorded tentacular nerve to monitor the coherent oscillations. The spatially separated regions in the digits oscillated at the same frequency as the tentacular nerve, indicating a single coherent activity. To study the neural networks underlying the coherent oscillations, we examined the distributions of acetylcholinesterase (AChE)-containing and gamma-aminobutyric acid immunoreactive (GABA-ir) neurons. AChE-containing and GABA-ir fibers were found to connect the neurons in a branch of the digits with those in other branches. We also used a vital staining technique with 1,1'-didodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate to examine the projections of neurons in the digits. Large stained cells were detected in many branches of the digits after placing the dye on one of the cell masses located in right and left sides of the tentacular ganglion. They were detected in the cell masses and in many branches of the digits after placing the dye on a branch of the digits. Our results showed that the slug primary olfactory system has highly interconnected neural networks.  相似文献   
969.
Elphick MR  Satou Y  Satoh N 《Gene》2003,302(1-2):95-101
The G-protein coupled cannabinoid receptors CB(1) and CB(2) are activated by Delta(9)-tetrahydrocannabinol, the psychoactive ingredient of cannabis, and mediate physiological effects of endogenous cannabinoids ('endocannabinoids'). CB(1) genes have been identified in mammals, birds, amphibians and fish, whilst CB(2) genes have been identified in mammals and in the puffer fish Fugu rubripes. Therefore, both CB(1) and CB(2) receptors probably occur throughout the vertebrates. However, cannabinoid receptor genes have yet to be identified in any invertebrate species and the evolutionary origin of cannabinoid receptors is unknown. Here we report the identification of CiCBR, a G-protein coupled receptor in a deuterostomian invertebrate - the urochordate Ciona intestinalis - that is orthologous to vertebrate cannabinoid receptors. The CiCBR cDNA encodes a protein with a predicted length (423 amino-acids) that is the intermediate of human CB(1) (472 amino-acids) and human CB(2) (360-amino-acid) receptors. Interestingly, the protein-coding region of the CiCBR gene is interrupted by seven introns, unlike in vertebrate cannabinoid receptor genes where the protein-coding region is typically intronless. Phylogenetic analysis revealed that CiCBR forms a clade with vertebrate cannabinoid receptors but is positioned outside the CB(1) and CB(2) clades of a phylogenetic tree, indicating that the common ancestor of CiCBR and vertebrate cannabinoid receptors predates a gene (genome) duplication event that gave rise to CB(1)- and CB(2)-type receptors in vertebrates. Importantly, the discovery of CiCBR and the absence of orthologues of CiCBR in protostomian invertebrates such as Drosophila melanogaster and Caenorhabditis elegans indicate that the ancestor of vertebrate CB(1) and CB(2) cannabinoid receptors originated in a deuterostomian invertebrate.  相似文献   
970.
Mammalian group IIA secretory phospholipase A2 (sPLA2-IIA) generates prostaglandin D2 (PGD2) and triggers apoptosis in cortical neurons. However, mechanisms of PGD2 generation and apoptosis have not yet been established. Therefore, we examined how second messengers are involved in the sPLA2-IIA-induced neuronal apoptosis in primary cultures of rat cortical neurons. sPLA2-IIA potentiated a marked influx of Ca2+ into neurons before apoptosis. A calcium chelator and a blocker of the L-type voltage-sensitive Ca2+ channel (L-VSCC) prevented neurons from sPLA2-IIA-induced neuronal cell death in a concentration-dependent manner. Furthermore, the L-VSCC blocker ameliorated sPLA2-IIA-induced morphologic alterations and apoptotic features such as condensed chromatin and fragmented DNA. Other blockers of VSCCs such as N type and P/Q types did not affect the neurotoxicity of sPLA2-IIA. Blockers of L-VSCC significantly suppressed sPLA2-IIA-enhanced Ca2+ influx into neurons. Moreover, reactive oxygen species (ROS) were generated prior to apoptosis. Radical scavengers reduced not only ROS generation, but also the sPLA2-IIA-induced Ca2+ influx and apoptosis. In conclusion, we demonstrated that sPLA2-IIA potentiates the influx of Ca2+ into neurons via L-VSCC. Furthermore, the present study suggested that eicosanoids and ROS generated during arachidonic acid oxidative metabolism are involved in sPLA2-IIA-induced apoptosis in cooperation with Ca2+.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号