首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   774篇
  免费   52篇
  国内免费   1篇
  827篇
  2023年   8篇
  2022年   15篇
  2021年   34篇
  2020年   19篇
  2019年   22篇
  2018年   31篇
  2017年   26篇
  2016年   35篇
  2015年   48篇
  2014年   40篇
  2013年   59篇
  2012年   68篇
  2011年   56篇
  2010年   29篇
  2009年   27篇
  2008年   39篇
  2007年   36篇
  2006年   29篇
  2005年   28篇
  2004年   22篇
  2003年   17篇
  2002年   19篇
  2001年   20篇
  2000年   14篇
  1999年   19篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   6篇
  1991年   9篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1986年   4篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1970年   3篇
  1968年   1篇
排序方式: 共有827条查询结果,搜索用时 15 毫秒
21.
The astrocyte is a major glial cell type of the brain, and plays key roles in the formation, maturation, stabilization and elimination of synapses. Thus, changes in astrocyte condition and age can influence information processing at synapses. However, whether and how aging astrocytes affect synaptic function and maturation have not yet been thoroughly investigated. Here, we show the effects of prolonged culture on the ability of astrocytes to induce synapse formation and to modify synaptic transmission, using cultured autaptic neurons. By 9 weeks in culture, astrocytes derived from the mouse cerebral cortex demonstrated increases in β-galactosidase activity and glial fibrillary acidic protein (GFAP) expression, both of which are characteristic of aging and glial activation in vitro. Autaptic hippocampal neurons plated on these aging astrocytes showed a smaller amount of evoked release of the excitatory neurotransmitter glutamate, and a lower frequency of miniature release of glutamate, both of which were attributable to a reduction in the pool of readily releasable synaptic vesicles. Other features of synaptogenesis and synaptic transmission were retained, for example the ability to induce structural synapses, the presynaptic release probability, the fraction of functional presynaptic nerve terminals, and the ability to recruit functional AMPA and NMDA glutamate receptors to synapses. Thus the presence of aging astrocytes affects the efficiency of synaptic transmission. Given that the pool of readily releasable vesicles is also small at immature synapses, our results are consistent with astrocytic aging leading to retarded synapse maturation.  相似文献   
22.
23.
Zinc-finger nucleases (ZFNs) are artificial enzymes that create site-specific double-strand breaks and thereby induce targeted genome editing. Here, we demonstrated successful gene disruption in somatic and germ cells of medaka (Oryzias latipes) using ZFN to target exogenous EGFP genes. Embryos that were injected with an RNA sequence pair coding for ZFNs showed mosaic loss of green fluorescent protein fluorescence in skeletal muscle. A number of mutations that included both deletions and insertions were identified within the ZFN target site in each embryo, whereas no mutations were found at the non-targeted sites. In addition, ZFN-induced mutations were introduced in germ cells and efficiently transmitted to the next generation. The mutation frequency varied (6-100%) in the germ cells from each founder, and a founder carried more than two types of mutation in germ cells. Our results have introduced the possibility of targeted gene disruption and reverse genetics in medaka.  相似文献   
24.

A methylene group in the fluorinated carbon backbone of 1H,1H,2H,2H,8H,8H–perfluorododecanol (degradable telomer fluoroalcohol, DTFA) renders the molecule cleavable by microbial degradation into two fluorinated carboxylic acids. Several biodegradation products of DTFA are known, but their rates of conversion and fates in the environment have not been determined. We used liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) to quantitatively investigate DTFA biodegradation by the microbial community in activated sludge in polyethylene terephthalate (PET) flasks, which we also determined here showed least adsorption of DTFA. A reduction in DTFA concentration in the medium was accompanied by rapid increases in the concentrations of 2H,2H,8H,8H–perfluorododecanoic acid (2H,2H,8H,8H–PFDoA), 2H,8H,8H-2-perfluorododecenoic acid (2H,8H,8H-2-PFUDoA), and 2H,2H,8H-7-perfluorododecenoic acid and 2H,2H,8H-8-perfluorododecenoic acid (2H,2H,8H-7-PFUDoA/2H,2H,8H-8-PFUDoA), which were in turn followed by an increase in 6H,6H–perfluorodecanoic acid (6H,6H–PFDeA) concentration, and decreases in 2H,2H,8H,8H–PFDoA, 2H,8H,8H-2-PFUDoA, and 2H,2H,8H-7-PFUDoA/2H,2H,8H-8-PFUDoA concentrations. Accumulation of perfluorobutanoic acid (PFBA), a presumed end product of DTFA degradation, was also detected. Our quantitative and time-course study of the concentrations of these compounds reveals main routes of DTFA biodegradation, and the presence of new biodegradation pathways.

  相似文献   
25.
Ridwansyah  Iwan  Yulianti  Meti  Apip  Onodera  Shin-ichi  Shimizu  Yuta  Wibowo  Hendro  Fakhrudin  M. 《Limnology》2020,21(3):487-498
Limnology - The Cimanuk River with a total watershed area of 4010.8 km2 flowing from the Garut Regency to Indramayu Delta is the longest in West Java Province. However, the cumulative...  相似文献   
26.
Because excessive glutamate release is believed to play a pivotal role in numerous neuropathological disorders, such as ischemia or seizure, we aimed to investigate whether intrinsic prosaposin (PS), a neuroprotective factor when supplied exogenously in vivo or in vitro, is up-regulated after the excitotoxicity induced by kainic acid (KA), a glutamate analog. In the present study, PS immunoreactivity and its mRNA expression in the hippocampal and cortical neurons showed significant increases on day 3 after KA injection, and high PS levels were maintained even after 3 weeks. The increase in PS, but not saposins, detected by immunoblot analysis suggests that the increase in PS-like immunoreactivity after KA injection was not due to an increase in saposins as lysosomal enzymes after neuronal damage, but rather to an increase in PS as a neurotrophic factor to improve neuronal survival. Furthermore, several neurons with slender nuclei inside/outside of the pyramidal layer showed more intense PS mRNA expression than other pyramidal neurons. Based on the results from double immunostaining using anti-PS and anti-GABA antibodies, these neurons were shown to be GABAergic interneurons in the extra- and intra-pyramidal layers. In the cerebral cortex, several large neurons in the V layer showed very intense PS mRNA expression 3 days after KA injection. The choroid plexus showed intense PS mRNA expression even in the normal rat, and the intensity increased significantly after KA injection. The present study indicates that inhibitory interneurons as well as stimulated hippocampal pyramidal and cortical neurons synthesize PS for neuronal survival, and the choroid plexus is highly activated to synthesize PS, which may prevent neurons from excitotoxic neuronal damage. To the best of our knowledge, this is the first study that demonstrates axonal transport and increased production of neurotrophic factor PS after KA injection.  相似文献   
27.
The Rinshoken cataract (rct) mutation, which causes congenital cataracts, is a recessive mutation found in SJL/J mice. All mutants present with opacity in the lens by 2?months of age. The rct locus was mapped to a 1.6-Mb region in Chr 4 that contains the Foxe3 gene. This gene is responsible for cataracts in humans and mice, and it plays a crucial role in the development of the lens. Furthermore, mutation of Foxe3 causes various ocular defects. We sequenced the genomic region of Foxe3, including the coding exons and UTRs; however, no mutations were discovered in these regions. Because there were no differences in Foxe3 sequences between the rct/rct and wild-type mice, we inferred that a mutation was located in the regulatory regions of the Foxe3 gene. To test this possibility, we sequenced a 5' noncoding region that is highly conserved among vertebrates and is predicted to be the major enhancer of Foxe3. This analysis revealed a deletion of 22-bp located approximately 3.2-kb upstream of the start codon of Foxe3 in rct mice. Moreover, we demonstrated by RT-PCR and in situ hybridization that the rct mutant has reduced expression of Foxe3 in the lens during development. We therefore suggest that cataracts in rct mice are caused by reduced Foxe3 expression in the lens and that this decreased expression is a result of a deletion in a cis-acting regulatory element.  相似文献   
28.
We previously reported that extracellular sphingomyelinase induces sphingomyelin hydrolysis in osteoblast-like MC3T3-E1 cells and that mitogen-activated protein (MAP) kinases are involved in bone morphogenetic protein (BMP)-4-stimulated osteocalcin synthesis in these cells. In the present study, we investigated whether sphingomyelinase affects BMP-4-stimulated synthesis of osteocalcin in osteoblast-like MC3T3-E1 cells. Sphingomyelinase significantly enhanced the BMP-4-stimulated osteocalcin synthesis. Among sphingomyelin metabolites, C(2)-ceramide enhanced the BMP-4-stimulated osteocalcin synthesis while sphingosine and sphingosine 1-phosphate had little effect on the synthesis. D-erythro-MAPP, an inhibitor of ceramidase, amplified the sphingomyelinase-effect on the osteocalcin synthesis. C(2)-ceramide suppressed the BMP-4-induced phosphorylation of p44/p42 MAP kinase, while having little effect on the phosphorylation of Smad1 and p38 MAP kinase. Taken together, our results strongly suggest that extracellular sphingomyelinase enhances the BMP-stimulated osteocalcin synthesis via ceramide in osteoblasts and that the effect of ceramide is exerted at a point upstream from p44/p42 MAP kinase.  相似文献   
29.
30.
Identification of the precise molecular pathways involved in oncogene-induced transformation may help us gain a better understanding of tumor initiation and promotion. Here, we demonstrate that SOX2+ foregut epithelial cells are prone to oncogenic transformation upon mutagenic insults, such as KrasG12D and p53 deletion. GFP-based lineage-tracing experiments indicate that SOX2+ cells are the cells-of-origin of esophagus and stomach hyperplasia. Our observations indicate distinct roles for oncogenic KRAS mutation and P53 deletion. p53 homozygous deletion is required for the acquisition of an invasive potential, and KrasG12D expression, but not p53 deletion, suffices for tumor formation. Global gene expression analysis reveals secreting factors upregulated in the hyperplasia induced by oncogenic KRAS and highlights a crucial role for the CXCR2 pathway in driving hyperplasia. Collectively, the array of genetic models presented here demonstrate that stratified epithelial cells are susceptible to oncogenic insults, which may lead to a better understanding of tumor initiation and aid in the design of new cancer therapeutics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号