首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   591篇
  免费   34篇
  国内免费   1篇
  626篇
  2023年   8篇
  2022年   14篇
  2021年   32篇
  2020年   20篇
  2019年   21篇
  2018年   27篇
  2017年   25篇
  2016年   30篇
  2015年   40篇
  2014年   35篇
  2013年   54篇
  2012年   59篇
  2011年   50篇
  2010年   25篇
  2009年   23篇
  2008年   26篇
  2007年   23篇
  2006年   13篇
  2005年   10篇
  2004年   15篇
  2003年   10篇
  2002年   4篇
  2001年   6篇
  2000年   6篇
  1999年   9篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1992年   4篇
  1991年   3篇
  1990年   5篇
  1989年   1篇
  1987年   2篇
  1985年   10篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有626条查询结果,搜索用时 0 毫秒
71.
The length-dependent activation of skeletal myofibrils was examined at the single-sarcomere level with phase-contrast microscopy at sarcomere length (SL) >2.2 μm. At the maximal activation by Ca2+ (pCa 4.5) the active force linearly decreased with increasing SL, while at partial activation by Ca2+ (pCa 6.1-6.5) the larger active force was generated at longer SL. Throughout these experiments, the distribution of SL was kept homogeneous upon activation. In addition, we found that the spontaneous oscillation of force and SL frequently occurs in the SL range 2.2-2.6 μm at pCa 6.1-6.2. Either changes in [Ca2+] or osmotic compression of the myofilament lattice induced by the addition of dextran T-500, affected both the length dependence of activation and the occurrence of auto-oscillation. These results suggest that the force-generating properties of sarcomeres in striated muscle are determined not only by [Ca2+], but also by the lattice spacing as a function of SL.  相似文献   
72.
73.
Despite the presence of β-1,2-glucan in nature, few β-1,2-glucan degrading enzymes have been reported to date. Recently, the Lin1839 protein from Listeria innocua was identified as a 1,2-β-oligoglucan phosphorylase. Since the adjacent lin1840 gene in the gene cluster encodes a putative glycoside hydrolase family 3 β-glucosidase, we hypothesized that Lin1840 is also involved in β-1,2-glucan dissimilation. Here we report the functional and structural analysis of Lin1840. A recombinant Lin1840 protein (Lin1840r) showed the highest hydrolytic activity toward sophorose (Glc-β-1,2-Glc) among β-1,2-glucooligosaccharides, suggesting that Lin1840 is a β-glucosidase involved in sophorose degradation. The enzyme also rapidly hydrolyzed laminaribiose (β-1,3), but not cellobiose (β-1,4) or gentiobiose (β-1,6) among β-linked gluco-disaccharides. We determined the crystal structures of Lin1840r in complexes with sophorose and laminaribiose as productive binding forms. In these structures, Arg572 forms many hydrogen bonds with sophorose and laminaribiose at subsite +1, which seems to be a key factor for substrate selectivity. The opposite side of subsite +1 from Arg572 is connected to a large empty space appearing to be subsite +2 for the binding of sophorotriose (Glc-β-1,2-Glc-β-1,2-Glc) in spite of the higher Km value for sophorotriose than that for sophorose. The conformations of sophorose and laminaribiose are almost the same on the Arg572 side but differ on the subsite +2 side that provides no interaction with a substrate. Therefore, Lin1840r is unable to distinguish between sophorose and laminaribiose as substrates. These results provide the first mechanistic insights into β-1,2-glucooligosaccharide recognition by β-glucosidase.  相似文献   
74.
We have previously demonstrated that knockout of the calcineurin gene or inhibition of calcineurin activity by immunosuppressants resulted in hypersensitivity to Cl- in fission yeast. We also demonstrated that knockout of the components of the Pmk1 mitogen-activated protein kinase (MAPK) pathway, such as Pmk1 or Pek1 complemented the hypersensitivity to Cl-. Using this interaction between calcineurin and Pmk1 MAPK, here we developed a genetic screen that aims to identify new regulators of the Pmk1 signaling and isolated vic (viable in the presence of immunosuppressant and chloride ion) mutants. One of the mutants, vic1-1, carried a missense mutation in the cpp1+ gene encoding a beta subunit of the protein farnesyltransferase, which caused an amino acid substitution of aspartate 155 of Cpp1 to asparagine (Cpp1(D155N)). Analysis of the mutant strain revealed that Rho2 is a novel target of Cpp1. Moreover, Cpp1 and Rho2 act upstream of Pck2-Pmk1 MAPK signaling pathway, thereby resulting in the vic phenotype upon their mutations. Interestingly, compared with other substrates of Cpp1, defects of Rho2 function were more phenotypically manifested by the Cpp1(D155N) mutation. Together, our results demonstrate that Cpp1 is a key component of the Pck2-Pmk1 signaling through the spatial control of the small GTPase Rho2.  相似文献   
75.
76.
Many organs, including salivary glands, lung, and kidney, are formed by epithelial branching during embryonic development. Branching morphogenesis occurs via either local outgrowths or the formation of clefts that subdivide epithelia into buds. This process is promoted by various factors, but the mechanism of branching morphogenesis is not fully understood. Here we have defined melatonin as a potential negative regulator or “brake” of branching morphogenesis, shown that the levels of it and its receptors decline when branching morphogenesis begins, and identified the process that it regulates. Melatonin has various physiological functions, including circadian rhythm regulation, free-radical scavenging, and gonadal development. Furthermore, melatonin is present in saliva and may have an important physiological role in the oral cavity. In this study, we found that the melatonin receptor is highly expressed on the acinar epithelium of the embryonic submandibular gland. We also found that exogenous melatonin reduces salivary gland size and inhibits branching morphogenesis. We suggest that this inhibition does not depend on changes in either proliferation or apoptosis, but rather relates to changes in epithelial cell adhesion and morphology. In summary, we have demonstrated a novel function of melatonin in organ formation during embryonic development.  相似文献   
77.
The astrocyte is a major glial cell type of the brain, and plays key roles in the formation, maturation, stabilization and elimination of synapses. Thus, changes in astrocyte condition and age can influence information processing at synapses. However, whether and how aging astrocytes affect synaptic function and maturation have not yet been thoroughly investigated. Here, we show the effects of prolonged culture on the ability of astrocytes to induce synapse formation and to modify synaptic transmission, using cultured autaptic neurons. By 9 weeks in culture, astrocytes derived from the mouse cerebral cortex demonstrated increases in β-galactosidase activity and glial fibrillary acidic protein (GFAP) expression, both of which are characteristic of aging and glial activation in vitro. Autaptic hippocampal neurons plated on these aging astrocytes showed a smaller amount of evoked release of the excitatory neurotransmitter glutamate, and a lower frequency of miniature release of glutamate, both of which were attributable to a reduction in the pool of readily releasable synaptic vesicles. Other features of synaptogenesis and synaptic transmission were retained, for example the ability to induce structural synapses, the presynaptic release probability, the fraction of functional presynaptic nerve terminals, and the ability to recruit functional AMPA and NMDA glutamate receptors to synapses. Thus the presence of aging astrocytes affects the efficiency of synaptic transmission. Given that the pool of readily releasable vesicles is also small at immature synapses, our results are consistent with astrocytic aging leading to retarded synapse maturation.  相似文献   
78.
Cell isolation by eliminating undesirable cell aggregations or colonies with low activity is essential to improve cell culture efficiency. Moreover, when creating tissues from induced pluripotent stem cells, residual undifferentiated cells must be removed to prevent tumor formation in vivo. Here, we evaluated the use of ultrasonic irradiation, which can apply energy locally without contact, and proposed a method to eliminate cells in a small area of culture by ultrasonic irradiation from a Langevin transducer. We constructed a device that incorporated a bolt‐clamped 19.84 kHz Langevin transducer with an ultrasonic horn and determined the optimal conditions for stable elimination of cells in small areas of a 35‐mm culture dish. The optimal conditions were as follows: number of cycles = 400, clearance distance = 1 mm, volume of medium = 4 mL, and distance from the center of culture surface = 0 mm. The mean cell elimination area under these conditions was 0.097 mm2. We also evaluated the viability of neighboring cells after ultrasonic irradiation by fluorescent staining and found that most cells around the elimination area survived. These findings suggest that the proposed method has potential for localized elimination of cells without the need for contact with the cell surface.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号