首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1473篇
  免费   123篇
  国内免费   1篇
  2023年   8篇
  2022年   16篇
  2021年   46篇
  2020年   25篇
  2019年   28篇
  2018年   37篇
  2017年   36篇
  2016年   44篇
  2015年   66篇
  2014年   57篇
  2013年   101篇
  2012年   121篇
  2011年   102篇
  2010年   57篇
  2009年   49篇
  2008年   86篇
  2007年   82篇
  2006年   63篇
  2005年   54篇
  2004年   62篇
  2003年   59篇
  2002年   50篇
  2001年   43篇
  2000年   43篇
  1999年   37篇
  1998年   14篇
  1997年   20篇
  1996年   5篇
  1995年   4篇
  1994年   6篇
  1993年   7篇
  1992年   21篇
  1991年   23篇
  1990年   15篇
  1989年   10篇
  1988年   15篇
  1987年   10篇
  1986年   4篇
  1985年   9篇
  1984年   6篇
  1983年   8篇
  1982年   4篇
  1981年   6篇
  1980年   3篇
  1979年   8篇
  1978年   5篇
  1977年   5篇
  1976年   4篇
  1975年   5篇
  1973年   3篇
排序方式: 共有1597条查询结果,搜索用时 15 毫秒
171.
The thermophilic, obligately chemolithoautotrophic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6, assimilates carbon dioxide via the reductive tricarboxylic acid cycle. A gene cluster, porEDABG, encoding pyruvate:ferredoxin oxidoreductase (POR), which plays a key role in this cycle, was cloned and sequenced. The nucleotide sequence and the gene organization were similar to those of the five subunit-type 2-oxoglutarate:ferredoxin oxidoreductase from this strain, although the anabolic POR had been previously reported to consist of four subunits. A small protein (8 kDa) encoded by porE, which had not been detected in the previous work, was identified in the purified recombinant POR expressed in Escherichia coli, indicating that the enzyme is also a five-subunit type. Incorporation of PorE in the wild-type POR enzyme was confirmed by immunological analysis. PorA, PorB, PorG, and PorE were similar to the alpha, beta, gamma, and delta subunits of the four subunit-type 2-oxoacid oxidoreductases, respectively, and had conserved specific motifs. PorD had no specific motifs but was essential for the expression of the active enzyme.  相似文献   
172.
A practical and highly effective Th1 adjuvant should induce Th1 cytokines (IL-12, IL-18, and TNF-alpha) but not the Th2 cytokine IL-10, an inhibitor of Th1 responses. In this study, phagocytosis of N-acetyl-d-glucosamine polymer (chitin) particles by RAW 264.7 cells, a murine macrophage-like cell line, resulted in phosphorylation of MAPK (p38, Erk 1/2, and JNK), and production of relatively high levels of TNF-alpha and COX-2 with increased PGE(2) release. Similar results were observed in response to oligonucleotides with CpG motifs, mycobacterial components and endotoxin. However, these bacterial components also induced a large amount of IL-10. Chitin particles, in contrast, failed to induce detectable levels of IL-10, although the production of high levels of PGE(2) and TNF-alpha and the activation of MAPK's are potentially positive signals for IL-10 production. Thus, our results indicate that chitin particles act as a unique Th1 adjuvant for macrophages without inducing increased production of IL-10.  相似文献   
173.
Inhibition of the activity of photosystem II (PSII) under strong light is referred to as photoinhibition. This phenomenon is due to the imbalance between the rate of photodamage to PSII and the rate of the repair of damaged PSII. Photodamage is initiated by the direct effects of light on the oxygen-evolving complex and, thus, photodamage to PSII is unavoidable. Studies of the effects of oxidative stress on photodamage and subsequent repair have revealed that reactive oxygen species (ROS) act primarily by inhibiting the repair of photodamaged PSII and not by damaging PSII directly. Thus, strong light has two distinct effects on PSII; it damages PSII directly and it inhibits the repair of PSII via production of ROS. Investigations of the ROS-induced inhibition of repair have demonstrated that ROS suppress the synthesis de novo of proteins and, in particular, of the D1 protein, that are required for the repair of PSII. Moreover, a primary target for inhibition by ROS appears to be the elongation step of translation. Inhibition of the repair of PSII by ROS is accelerated by the deceleration of the Calvin cycle that occurs when the availability of CO2 is limited. In this review, we present a new paradigm for the action of ROS in photoinhibition.  相似文献   
174.
The mammalian bromodomain protein Brd4 interacts with mitotic chromosomes by binding to acetylated histone H3 and H4 and is thought to play a role in epigenetic memory. Mitotic cells are susceptible to antimicrotubule drugs. These drugs activate multiple response pathways and arrest cells at mitosis. We found that Brd4 was rapidly released from chromosomes upon treatment with antimicrotubule drugs, including the reversible agent nocodazole. Yet, when nocodazole was withdrawn, Brd4 was reloaded onto chromosomes, and cells proceeded to complete cell division. However, cells in which a Brd4 allele was disrupted (Brd4+/-), and expressing only half of the normal Brd4 levels, were defective in reloading Brd4 onto chromosomes. Consequently, Brd4+/- cells were impaired in their ability to recover from nocodazole-induced mitotic arrest: a large fraction of +/- cells failed to reach anaphase after drug withdrawal, and those that entered anaphase showed an increased frequency of abnormal chromosomal segregation. The reloading defect observed in Brd4+/- cells coincided with selective hypoacetylation of lysine residues on H3 and H4. The histone deacetylase inhibitor trichostatin A increased global histone acetylation and perturbed nocodazole-induced Brd4 unloading. Brd4 plays an integral part in a cellular response to drug-induced mitotic stress by preserving a properly acetylated chromatin status.  相似文献   
175.
We have previously demonstrated that knockout of the calcineurin gene or inhibition of calcineurin activity by immunosuppressants resulted in hypersensitivity to Cl- in fission yeast. We also demonstrated that knockout of the components of the Pmk1 mitogen-activated protein kinase (MAPK) pathway, such as Pmk1 or Pek1 complemented the hypersensitivity to Cl-. Using this interaction between calcineurin and Pmk1 MAPK, here we developed a genetic screen that aims to identify new regulators of the Pmk1 signaling and isolated vic (viable in the presence of immunosuppressant and chloride ion) mutants. One of the mutants, vic1-1, carried a missense mutation in the cpp1+ gene encoding a beta subunit of the protein farnesyltransferase, which caused an amino acid substitution of aspartate 155 of Cpp1 to asparagine (Cpp1(D155N)). Analysis of the mutant strain revealed that Rho2 is a novel target of Cpp1. Moreover, Cpp1 and Rho2 act upstream of Pck2-Pmk1 MAPK signaling pathway, thereby resulting in the vic phenotype upon their mutations. Interestingly, compared with other substrates of Cpp1, defects of Rho2 function were more phenotypically manifested by the Cpp1(D155N) mutation. Together, our results demonstrate that Cpp1 is a key component of the Pck2-Pmk1 signaling through the spatial control of the small GTPase Rho2.  相似文献   
176.
Never-dried native celluloses (bleached sulfite wood pulp, cotton, tunicin, and bacterial cellulose) were disintegrated into individual microfibrils after oxidation mediated by the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radical followed by a homogenizing mechanical treatment. When oxidized with 3.6 mmol of NaClO per gram of cellulose, almost the totality of sulfite wood pulp and cotton were readily disintegrated into long individual microfibrils by a treatment with a Waring Blendor, yielding transparent and highly viscous suspensions. When observed by transmission electron microscopy, the wood pulp and cotton microfibrils exhibited a regular width of 3-5 nm. Tunicin and bacterial cellulose could be disintegrated by sonication. A bulk degree of oxidation of about 0.2 per one anhydroglucose unit of cellulose was necessary for a smooth disintegration of sulfite wood pulp, whereas only small amounts of independent microfibrils were obtained at lower oxidation levels. This limiting degree of oxidation decreased in the following order: sulfite wood pulp > cotton > bacterial cellulose, tunicin.  相似文献   
177.
Leptothrix cholodnii is a Mn(II)-oxidizing and sheath-forming member of the class β-Proteobacteria. Its sheath is a microtube-like filament that contains a chain of cells. From a chemical perspective, the sheath can be described as a supermolecule composed of a cysteine-rich polymeric glycoconjugate, called thiopeptidoglycan. However, the mechanism that controls the increase in sheath length is unknown. In this study, we attempted to detect sheath elongation through microscopic examination by using conventional reagents. Selective fluorescent labeling of preexisting or newly formed regions of the sheath was accomplished using combinations of biotin-conjugated maleimide, propionate-conjugated maleimide, and a fluorescent antibiotin antibody. Epifluorescence microscopy indicated that the sheath elongates at the terminal regions. On the bases of this observation, we assumed that the newly secreted thiopeptidoglycan molecules are integrated into the preexisting sheath at its terminal ends. Successive phase-contrast microscopy revealed that all cells proliferate at nearly the same rate regardless of their positions within the sheath. Mn(II) oxidation in microcultures was also examined with respect to cultivation time. Results suggested that the deposition of Mn oxides is notable in the aged regions. The combined data reveal the spatiotemporal relationships among sheath elongation, cell proliferation, and Mn oxide deposition in L. cholodnii.  相似文献   
178.
A site-specific isotope labeling technique of long RNA molecules was established. This technique is comprised of two simple enzymatic reactions, namely a guanosine transfer reaction of group I self-splicing introns and a ligation with T4 DNA ligase. The trans-acting group I self-splicing intron with its external cofactor, 'isotopically labeled guanosine 5'-monophosphate' (5'-GMP), steadily gave a 5'-residue-labeled RNA fragment. This key reaction, in combination with a ligation of 5'-remainder non-labeled sequence, allowed us to prepare a site-specifically labeled RNA molecule in a high yield, and its production was confirmed with (15)N NMR spectroscopy. Such a site-specifically labeled RNA molecule can be used to detect a molecular interaction and to probe chemical features of catalytically/structurally important residues with NMR spectroscopy and possibly Raman spectroscopy and mass spectrometry.  相似文献   
179.
Mutations in the apically located Na(+)-dependent phosphate (NaPi) cotransporter, SLC34A3 (NaPi-IIc), are a cause of hereditary hypophosphatemic rickets with hypercalciuria (HHRH). We have characterized the impact of several HHRH mutations on the processing and stability of human NaPi-IIc. Mutations S138F, G196R, R468W, R564C, and c.228delC in human NaPi-IIc significantly decreased the levels of NaPi cotransport activities in Xenopus oocytes. In S138F and R564C mutant proteins, this reduction is a result of a decrease in the V(max) for P(i), but not the K(m). G196R, R468W, and c.228delC mutants were not localized to oocyte membranes. In opossum kidney (OK) cells, cell surface labeling, microscopic confocal imaging, and pulse-chase experiments showed that G196R and R468W mutations resulted in an absence of cell surface expression owing to endoplasmic reticulum (ER) retention. G196R and R468W mutants could be partially stabilized by low temperature. In blue native-polyacrylamide gel electrophoresis analysis, G196R and R468W mutants were either denatured or present in an aggregation complex. In contrast, S138F and R564C mutants were trafficked to the cell surface, but more rapidly degraded than WT protein. The c.228delC mutant did not affect endogenous NaPi uptake in OK cells. Thus, G196R and R468W mutations cause ER retention, while S138F and R564C mutations stimulate degradation of human NaPi-IIc in renal epithelial cells. Together, these data suggest that the NaPi-IIc mutants in HHRH show defective processing and stability.  相似文献   
180.
O-linked-β-N-acetylglucosamine (O-GlcNAc) modification is a unique cytoplasmic and nuclear protein modification that is common in nearly all eukaryotes, including filamentous fungi, plants, and animals. We had recently reported that epidermal growth factor (EGF) repeats of Notch and Dumpy are O-GlcNAcylated by an atypical O-GlcNAc transferase, EOGT, in Drosophila. However, no study has yet shown whether O-GlcNAcylation of extracellular proteins is limited to insects such as Drosophila or whether it occurs in other organisms, including mammals. Here, we report the characterization of A130022J15Rik, a mouse gene homolog of Drosophila Eogt (Eogt 1). Enzymatic analysis revealed that Eogt1 has a substrate specificity similar to that of Drosophila EOGT, wherein the Thr residue located between the fifth and sixth conserved cysteines of the folded EGF-like domains is modified. This observation is supported by the fact that the expression of Eogt1 in Drosophila rescued the cell-adhesion defect caused by Eogt downregulation. In HEK293T cells, Eogt1 expression promoted modification of Notch1 EGF repeats by O-GlcNAc, which was further modified, at least in part, by galactose to generate a novel O-linked-N-acetyllactosamine structure. These results suggest that Eogt1 encodes EGF domain O-GlcNAc transferase and that O-GlcNAcylation reaction in the secretory pathway is a fundamental biochemical process conserved through evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号