首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1468篇
  免费   123篇
  国内免费   1篇
  2023年   8篇
  2022年   11篇
  2021年   46篇
  2020年   25篇
  2019年   28篇
  2018年   37篇
  2017年   36篇
  2016年   44篇
  2015年   66篇
  2014年   57篇
  2013年   101篇
  2012年   121篇
  2011年   102篇
  2010年   57篇
  2009年   49篇
  2008年   86篇
  2007年   82篇
  2006年   63篇
  2005年   54篇
  2004年   62篇
  2003年   59篇
  2002年   50篇
  2001年   43篇
  2000年   43篇
  1999年   37篇
  1998年   14篇
  1997年   20篇
  1996年   5篇
  1995年   4篇
  1994年   6篇
  1993年   7篇
  1992年   21篇
  1991年   23篇
  1990年   15篇
  1989年   10篇
  1988年   15篇
  1987年   10篇
  1986年   4篇
  1985年   9篇
  1984年   6篇
  1983年   8篇
  1982年   4篇
  1981年   6篇
  1980年   3篇
  1979年   8篇
  1978年   5篇
  1977年   5篇
  1976年   4篇
  1975年   5篇
  1973年   3篇
排序方式: 共有1592条查询结果,搜索用时 31 毫秒
141.
Oxidative stress inhibits the repair of photodamaged photosystem II (PSII). This inhibition is due initially to the suppression, by reactive oxygen species (ROS), of the synthesis de novo of proteins that are required for the repair of PSII, such as the D1 protein, at the level of translational elongation. To investigate in vitro the mechanisms whereby ROS inhibit translational elongation, we developed a translation system in vitro from the cyanobacterium Synechocystis sp. PCC 6803. The synthesis of the D1 protein in vitro was inhibited by exogenous H2O2. However, the addition of reduced forms of elongation factor G (EF-G), which is known to be particularly sensitive to oxidation, was able to reverse the inhibition of translation. By contrast, the oxidized forms of EF-G failed to restore translational activity. Furthermore, the overexpression of EF-G of Synechocystis in another cyanobacterium Synechococcus sp. PCC 7942 increased the tolerance of cells to H2O2 in terms of protein synthesis. These observations suggest that EF-G might be the primary target, within the translational machinery, of inhibition by ROS.  相似文献   
142.
Never-dried and once-dried hardwood celluloses were oxidized by a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated system, and highly crystalline and individualized cellulose nanofibers, dispersed in water, were prepared by mechanical treatment of the oxidized cellulose/water slurries. When carboxylate contents formed from the primary hydroxyl groups of the celluloses reached approximately 1.5 mmol/g, the oxidized cellulose/water slurries were mostly converted to transparent and highly viscous dispersions by mechanical treatment. Transmission electron microscopic observation showed that the dispersions consisted of individualized cellulose nanofibers 3-4 nm in width and a few microns in length. No intrinsic differences between never-dried and once-dried celluloses were found for preparing the dispersion, as long as carboxylate contents in the TEMPO-oxidized celluloses reached approximately 1.5 mmol/g. Changes in viscosity of the dispersions during the mechanical treatment corresponded with those in the dispersed states of the cellulose nanofibers in water.  相似文献   
143.
Lamellar square single crystals of V-amylose were obtained by adding alpha-naphthol to metastable dilute aqueous solutions of synthetic amylose chains with an average degree of polymerization of 100. The morphology and structure of the crystals were studied using low-dose transmission electron microscopy including high-resolution imaging, as well as electron and X-ray diffraction. The crystals are crystallized in a tetragonal P4(1)2(1)2 or P4(3)2(1)2 space group with unit cell parameters, calculated from X-ray diffraction data, a = b = 2.2844 nm (+/-0.0005) and c = 0.7806 nm (+/-0.001), implying the presence of two amylose chains per unit cell. High-resolution lattice images of the crystals confirmed that the amylose chains were crystallized as 8-fold helices corresponding to the repeat of four maltosyl units.  相似文献   
144.
145.
We have reported previously that dopamine D2 receptor stimulation activates calcium/calmodulin-dependent protein kinase II (CaMKII) δ3, a CaMKII nuclear isoform, increasing BDNF gene expression. However, the mechanisms underlying that activity remained unclear. Here we report that CaMKIIδ3 is dephosphorylated at Ser332 by protein phosphatase 1 (PP1), promoting CaMKIIδ3 nuclear translocation. Neuro-2a cells transfected with CaMKIIδ3 showed cytoplasmic and nuclear staining, but the staining was predominantly nuclear when CaMKIIδ3 was coexpressed with PP1. Indeed, PP1 and CaMKIIδ3 coexpression significantly increased nuclear CaMKII activity and enhanced BDNF expression. In support of this idea, chronic administration of the dopamine D2 receptor partial agonist aripiprazole increased PP1 activity and promoted nuclear CaMKIIδ3 translocation and BDNF expression in the rat brain substantia nigra. Moreover, aripiprazole treatment enhanced neurite extension and inhibited cell death in cultured dopaminergic neurons, effects blocked by PP1γ knockdown. Taken together, nuclear translocation of CaMKIIδ3 following dephosphorylation at Ser332 by PP1 likely accounts for BDNF expression and subsequent neurite extension and survival of dopaminergic neurons.  相似文献   
146.
147.
148.
149.
Emerging evidence indicates that R4/B subfamily RGS (regulator of G protein signaling) proteins play roles in functional regulation in the cardiovascular system. In this study, we compared effects of three R4/B subfamily proteins, RGS2, RGS4 and RGS5 on angiotensin AT1 receptor signaling, and investigated roles of the N-terminus of RGS2. In HEK293T cells expressing AT1 receptor stably, intracellular Ca2+ responses induced by angiotensin II were much more strongly attenuated by RGS2 than by RGS4 and RGS5. N-terminally deleted RGS2 proteins lost this potent inhibitory effect. Replacement of the N-terminal residues 1-71 of RGS2 with the corresponding residues (1-51) of RGS5 decreased significantly the inhibitory effect. On the other hand, replacement of the residues 1-51 of RGS5 with the residues 1-71 of RGS2 increased the inhibitory effect dramatically. Furthermore, we investigated functional contribution of N-terminal subdomains of RGS2, namely, an N-terminal region (residues 16-55) with an amphipathic α helix domain (the subdomain N1), a probable non-specific membrane-targeting subdomain, and another region (residues 56-71) between the α helix and the RGS box (the subdomain N2), a probable GPCR-recognizing subdomain. RGS2 chimera proteins with the residues 1-33 or 34-52 of RGS5 showed weak inhibitory activity, and either of RGS5 chimera proteins with residues 1-55 or 56-71 of RGS2 showed strong inhibitory effects on AT1 receptor signaling. The present study indicates the essential roles of both N-terminal subdomains for the potent inhibitory activity of RGS2 on AT1 receptor signaling.  相似文献   
150.
We performed combinational bioconversion of substituted naphthalenes with PhnA1A2A3A4 (an aromatic dihydroxylating dioxygenase from marine bacterium Cycloclasticus sp. strain A5) and prenyltransferase NphB (geranyltransferase from Streptomyces sp. strain CL190) or SCO7190 (dimethylallyltransferase from Streptomyces coelicolor A3(2)) to produce prenyl naphthalen-ols. Using 2-methylnaphthalene, 1-methoxynaphthalene, and 1-ethoxynaphthalene as the starting substrates, 10 novel prenyl naphthalen-ols were produced by combinational bioconversion. These novel prenyl naphthalen-ols each showed potent antioxidative activity against a rat brain homogenate model. 2-(2,3-Dihydroxyphenyl)-5,7-dihydroxy-chromen-4-one (2',3'-dihydroxychrysin) generated with another aromatic dihydroxylating dioxygenase and subsequent dehydrogenase was also geranylated at the C-5'-carbon by the action of NphB.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号