首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2677篇
  免费   143篇
  2820篇
  2024年   2篇
  2023年   12篇
  2022年   46篇
  2021年   50篇
  2020年   28篇
  2019年   58篇
  2018年   78篇
  2017年   63篇
  2016年   81篇
  2015年   133篇
  2014年   147篇
  2013年   243篇
  2012年   222篇
  2011年   239篇
  2010年   145篇
  2009年   127篇
  2008年   195篇
  2007年   161篇
  2006年   156篇
  2005年   129篇
  2004年   115篇
  2003年   108篇
  2002年   92篇
  2001年   18篇
  2000年   11篇
  1999年   15篇
  1998年   17篇
  1997年   13篇
  1996年   11篇
  1995年   14篇
  1994年   8篇
  1993年   11篇
  1992年   11篇
  1991年   8篇
  1990年   8篇
  1989年   6篇
  1988年   8篇
  1987年   5篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1980年   2篇
  1977年   3篇
  1976年   1篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1966年   1篇
排序方式: 共有2820条查询结果,搜索用时 15 毫秒
71.
2-Aminooxyisobutyric acid (AOIB) has a partial structure of aminooxyacetic acid (AOA) in its whole structure, and resembles 2-aminoisobutyric acid (AIB) in their tetrahedral structures. Both AOA and AIB are inhibitors of ethylene biosynthesis; AOA inhibits the action of 1-aminocyclopropane-1-carboxylate (ACC) synthase and AIB inhibits that of ACC oxidase. The present study showed that AOIB inhibited the in vitro activities of both ACC synthase and ACC oxidase, which were synthesized heterologously in E. coli cells from corresponding carnation cDNAs, and the magnitudes of inhibition were similar to those caused by AOA and AIB; AOIB and AOA at 0.1 mM inhibited ACC synthase action by 75%, and AOIB and AIB at 10 mM inhibited ACC oxidase action by 16.3 and 22.5%, respectively. AOIB at 1 mM caused 91.5% reduction of maximum ethylene production rate as compared to the control in cut ‘Excerea’ carnation flowers undergoing senescence, thereby lengthening their vase life to 7 d from 3 d of the control flowers. The inhibition by AOIB was probably caused by its action resembling AOA, but not AIB. AOIB also extended significantly the vase life of cut flowers of ‘Pax’ carnation, and tended to do so in ‘Primero Mango’ carnation. The present findings suggest the potential of AOIB as a new preservative for carnations and other ornamentals in which ethylene plays a key role in the induction of senescence.  相似文献   
72.

Background

Cholestatic liver diseases exhibit higher levels of serum γ-glutamyl transpeptidase (GGT) and incidence of secondary osteoporosis. GGT has been identified as a novel bone-resorbing factor that stimulates osteoclast formation. The aim of this study was to elucidate the interaction of elevated GGT levels and cholestatic liver disease-induced bone loss.

Methods

Wistar rats were divided into three groups: sham-operated control (SO) rats, bile duct ligation (BDL) rats, and anti-GGT antibody-treated BDL rats (AGT). Serum GGT level was measured. Bone mineral density (BMD) was analyzed by dual-energy X-ray absorptiometry. Bone morphometric parameters and microarchitectural properties were determined by micro-computed tomography and histomorphometry of the distal metaphysis of femurs. Alterations of bone metabolism-related factors were evaluated by cytokine array. Effects of GGT on osteoblasts or stromal cells were evaluated by RT-PCR, enzyme activity, and mineralization ability.

Results

Serum levels of GGT were significantly elevated in the BDL-group. In the BDL group, BMD, bone mass percentage, and osteoblast number were significantly decreased, whereas osteoclast number was significantly increased. These alterations were markedly attenuated in the AGT group. The mRNA levels of vascular endothelial growth factor-A, LPS-induced CXC chemokine, monocyte chemoattractant protein-1, tumor necrosis factor-α interleukin-1β and receptor activator of nuclear factor-kappa B ligand were upregulated, and those of interferon-γ and osteoprotegerin were downregulated in the GGT-treated stromal cells. Furthermore, GGT inhibited mineral nodule formation and expression of alkaline phosphatase and bone sialo-protein in osteoblastic cells.

Conclusion

Our results indicate that elevated GGT level is involved in hepatic osteodystrophy through secretion of bone resorbing factor from GGT-stimulated osteoblasts/bone marrow stromal cells. In addition, GGT also possesses suppressive effects on bone formation. Managing elevated GGT levels by anti-GGT antibody may become a novel therapeutic agent for hepatic osteodystrophy in chronic liver diseases.  相似文献   
73.
The present study shows that the H19 and Igf2r genes, which are imprinted and expressed solely from maternal alleles, are expressed in an unregulatable manner in mouse uniparental, androgenetic, and parthenogenetic fetuses at day 9.5 of gestation. In the androgenetic fetuses, the H19 and Igf2r genes were respectively expressed at 12 and 40% of the levels in biparental fetuses. In addition, the expression of both genes was excessive (1259 and 482%, respectively) in the parthenotes. These expressions of the imprinted genes were not regulated by methylation in the regulatory regions. Moreover, the expression of the antisense Igf2r RNA (Air) was also excessive and was not correlated with Igf2r gene expression in the uniparental fetuses. Taken together, these results indicate that the parental specific expression of imprinted genes is not maintained in particular genes in uniparental embryos, which in turn suggests that both parental genomes are required to establish maternal specific expression of the H19 and Igf2r genes by trans-acting mechanisms.  相似文献   
74.
75.

Purpose

A proton beam therapy (PBT) system has been designed which dedicates to spot-scanning and has a gating function employing the fluoroscopy-based real-time-imaging of internal fiducial markers near tumors. The dose distribution and treatment time of the newly designed real-time-image gated, spot-scanning proton beam therapy (RGPT) were compared with free-breathing spot-scanning proton beam therapy (FBPT) in a simulation.

Materials and Methods

In-house simulation tools and treatment planning system VQA (Hitachi, Ltd., Japan) were used for estimating the dose distribution and treatment time. Simulations were performed for 48 motion parameters (including 8 respiratory patterns and 6 initial breathing timings) on CT data from two patients, A and B, with hepatocellular carcinoma and with clinical target volumes 14.6 cc and 63.1 cc. The respiratory patterns were derived from the actual trajectory of internal fiducial markers taken in X-ray real-time tumor-tracking radiotherapy (RTRT).

Results

With FBPT, 9/48 motion parameters achieved the criteria of successful delivery for patient A and 0/48 for B. With RGPT 48/48 and 42/48 achieved the criteria. Compared with FBPT, the mean liver dose was smaller with RGPT with statistical significance (p<0.001); it decreased from 27% to 13% and 28% to 23% of the prescribed doses for patients A and B, respectively. The relative lengthening of treatment time to administer 3 Gy (RBE) was estimated to be 1.22 (RGPT/FBPT: 138 s/113 s) and 1.72 (207 s/120 s) for patients A and B, respectively.

Conclusions

This simulation study demonstrated that the RGPT was able to improve the dose distribution markedly for moving tumors without very large treatment time extension. The proton beam therapy system dedicated to spot-scanning with a gating function for real-time imaging increases accuracy with moving tumors and reduces the physical size, and subsequently the cost of the equipment as well as of the building housing the equipment.  相似文献   
76.
Vinculin is a highly conserved actin-binding protein that is localized in integrin-mediated focal adhesion complexes. Although critical roles have been proposed for integrins in hematopoietic stem cell (HSC) function, little is known about the involvement of intracellular focal adhesion proteins in HSC functions. This study showed that the ability of c-Kit+Sca1+Lin HSCs to support reconstitution of hematopoiesis after competitive transplantation was severely impaired by lentiviral transduction with short hairpin RNA sequences for vinculin. The potential of these HSCs to differentiate into granulocytic and monocytic lineages, to migrate toward stromal cell-derived factor 1α, and to home to the bone marrow in vivo were not inhibited by the loss of vinculin. However, the capacities to form long term culture-initiating cells and cobblestone-like areas were abolished in vinculin-silenced c-Kit+Sca1+Lin HSCs. In contrast, adhesion to the extracellular matrix was inhibited by silencing of talin-1, but not of vinculin. Whole body in vivo luminescence analyses to detect transduced HSCs confirmed the role of vinculin in long term HSC reconstitution. Our results suggest that vinculin is an indispensable factor determining HSC repopulation capacity, independent of integrin functions.  相似文献   
77.
Neural stem cells (NSCs) possess high proliferative potential and the capacity for self-renewal with retention of multipotency to differentiate into neuronal and glial cells. NSCs are the source for neurogenesis during central nervous system development from fetal and adult stages. Although the human natural killer-1 (HNK-1) carbohydrate epitope is expressed predominantly in the nervous system and involved in intercellular adhesion, cell migration, and synaptic plasticity, the expression patterns and functional roles of HNK-1-containing glycoconjugates in NSCs have not been fully recognized. We found that HNK-1 was expressed in embryonic mouse NSCs and that this expression was lost during the process of differentiation. Based on proteomics analysis, it was revealed that the HNK-1 epitopes were almost exclusively displayed on an extracellular matrix protein, tenascin-C (TNC), in the mouse embryonic NSCs. Furthermore, the HNK-1 epitope was found to be present only on the largest isoform of the TNC molecules. In addition, the expression of HNK-1 was dependent on expression of the largest TNC variant but not by enzymes involved in the biosynthesis of HNK-1. By knocking down HNK-1 sulfotransferase or TNC by small interfering RNA, we further demonstrated that HNK-1 on TNC was involved in the proliferation of NSCs via modulation of the expression level of the epidermal growth factor receptor. Our finding provides insights into the function of HNK-1 carbohydrate epitopes in NSCs to maintain stemness during neural development.  相似文献   
78.
This study was conducted to demonstrate the involvement of nitric oxide synthase (NOS) in the early-phase isoflurane-induced hypotension and to ascertain whether this NOS is neuronal NOS (nNOS) or endothelial NOS (eNOS). Mean arterial pressures (MAPs) were directly measured from the femoral arteries of urethane-anesthetized rats. Isoflurane-induced changes in MAP were monitored in rats following pretreatment with vehicle or one of the following NOS inhibitors: L-NG-monomethyl-L-arginine (L-NMMA), which is non-selective; L-NG-nitro arginine (L-NOARG), which is more selective for nNOS and eNOS; and 7-nitroindazole (7-NI), which is selective for nNOS. Exposure to 2% isoflurane in oxygen produced a triphasic reduction in MAP, including an early phase in which mean arterial pressure (MAP) fell by 25-30% during the initial 2½ min. This early hypotensive response, but not subsequent phases, was abolished by i.v. pretreatment with either L-NMMA or L-NOARG. The early-phase hypotension was also significantly attenuated by i.p. pretreatment with 7-NI; however, the blockade was not as complete as with L-NMMA or L-NOARG. Cerebella and aorta were removed from vehicle- and 7-NI pretreated rats and assayed for NOS activity by determining the conversion of [14C]L-arginine to [14C]L-citrulline. The 7-NI pretreatment significantly reduced NOS activity in the cerebellum but not the aorta. These findings indicate that the early-phase isoflurane-induced hypotension may involve nNOS as well as eNOS. The nNOS may participate in regulation of isoflurane-induced neuronal release of endogenous opioid peptide, which produces a vasodilation that is dependent on NO derived from an action of eNOS.  相似文献   
79.
Abstract

Practical method to produce 2′,3′-dideoxypurinenucleosides from 9-(2,5-di-O-acetyl-3-bromo-3-deoxy-β-D-xylofuranosyl)purines (1) was developed. High ratio of 2′,3′-dideoxynucleoside to 3′-deoxyribonucleoside was obtained by selecting the reaction conditions (solvent, pH and/or base), or changing 2′-acyloxy leaving group. The reaction mechanism was studied by deuteration experiments of 1a and 1-(3,5-di-O-acety1-2-bromo-2-deoxy-β-D-ribofuranosyl)thymine (12).

  相似文献   
80.

Background

Fabry disease is an X-linked inherited metabolic condition where the deficit of the α-galactosidase A enzyme, encoded by the GLA gene, leads to glycosphingolipid storage, mainly globotriaosylceramide. To date, more than 600 mutations have been identified in human GLA gene that are responsible for FD, including missense and nonsense mutations, small and large deletions. Such mutations are usually inherited, and cases of de novo onset occur rarely.

Case presentation

In this article we report an interesting case of a 44-year-old male patient suffering from a severe form of Fabry disease, with negative family history. The patient showed signs such as cornea verticillata, angiokeratomas, cardiac and neurological manifestations, an end-stage renal disease and he had low α-galactosidase A activity. We detected, in this subject, the mutation c.493 G?>?C in the third exon of the GLA gene which causes the amino acid substitution D165H in the protein. This mutation affects the amino acid - belonging to the group of buried residues - involved, probably, in the preservation of the protein folding. Moreover, studies of multiple sequence alignment indicate that this amino acid is highly conserved, thus strengthening the hypothesis that it is a key amino acid to the enzyme functionality. The study of the relatives of the patient showed that, surprisingly, none of the members of his family of origin had this genetic alteration, suggesting a de novo mutation. Only his 11-year-old daughter - showing acroparaesthesias and heat intolerance with reduced enzymatic activity - had the same mutation.

Conclusions

We suggest that a non-inherited mutation of the α-galactosidase A gene is responsible for Fabry disease in the patient who had reduced enzyme activity and classical clinical manifestations of the disease. In a family, it is rare to find only one Fabry disease affected subject with a de novo mutation. These findings emphasize the importance of early diagnosis, genetic counselling, studying the genealogical tree of the patients and starting enzyme replacement therapy to prevent irreversible vital organ damage that occurs during the course of the disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号