首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2683篇
  免费   141篇
  2023年   10篇
  2022年   43篇
  2021年   44篇
  2020年   28篇
  2019年   58篇
  2018年   84篇
  2017年   62篇
  2016年   82篇
  2015年   126篇
  2014年   139篇
  2013年   259篇
  2012年   212篇
  2011年   227篇
  2010年   139篇
  2009年   121篇
  2008年   190篇
  2007年   148篇
  2006年   146篇
  2005年   125篇
  2004年   112篇
  2003年   102篇
  2002年   88篇
  2001年   18篇
  2000年   15篇
  1999年   17篇
  1998年   19篇
  1997年   14篇
  1996年   14篇
  1995年   11篇
  1994年   7篇
  1993年   10篇
  1992年   10篇
  1991年   14篇
  1990年   13篇
  1989年   12篇
  1988年   13篇
  1987年   6篇
  1986年   9篇
  1985年   7篇
  1984年   6篇
  1983年   5篇
  1982年   7篇
  1981年   5篇
  1979年   5篇
  1978年   5篇
  1976年   5篇
  1975年   5篇
  1974年   6篇
  1973年   4篇
  1972年   4篇
排序方式: 共有2824条查询结果,搜索用时 15 毫秒
121.
We have recently shown that 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, an endoplasmic reticulum (ER) membrane protein, is degraded in ER membranes prepared from sterol pretreated cells and that such degradation is catalyzed by a cysteine protease within the reductase membrane domain. The use of various protease inhibitors suggested that degradation of HMG-CoA reductase in vitro is catalyzed by a cathepsin L-type cysteine protease. Purified ER contains E-64-sensitive cathepsin L activity whose inhibitor sensitivity was well matched to that of HMG-CoA reductase degradation in vitro. CLIK-148 (cathepsin L inhibitor) inhibited degradation of HMG-CoA reductase in vitro. Purified cathepsin L also efficiently cleaved HMG-CoA reductase in isolated ER preparations. To determine whether a cathepsin L-type cysteine protease is involved in sterol-regulated degradation of HMG-CoA reductase in vivo, we examined the effect of E-64d, a membrane-permeable cysteine protease inhibitor, in living cells. While lactacystin, a proteasome-specific inhibitor, inhibited sterol-dependent degradation of HMG-CoA reductase, E-64d failed to do so. In contrast, degradation of HMG-CoA reductase in sonicated cells was inhibited by E-64d, CLIK-148, and leupeptin but not by lactacystin. Our results indicate that HMG-CoA reductase is degraded by the proteasome under normal conditions in living cells and that it is cleaved by cathepsin L leaked from lysosomes during preparation of the ER, thus clarifying the apparently paradoxical in vivo and in vitro results. Cathepsin L-dependent proteolysis was observed to occur preferentially in sterol-pretreated cells, suggesting that sterol treatment results in conformational changes in HMG-CoA reductase that make it more susceptible to such cleavage.  相似文献   
122.
beta-Conglycinin decreased blood triacylglycerol (TAG) levels in male Wistar adult rats. Liver mitochondrial carnitine palmitoyltransferase activity in the beta-conglycinin-fed group significantly increased as against the casein-fed group. Hepatic fatty acid synthase activity in the beta-conglycinin group significantly decreased as against that of the casein-fed group. Fecal fatty acid excretion in the beta-conglycinin group was significantly higher than in the casein group.  相似文献   
123.
During the investigation of the development of insulin-mimetic zinc(II) complexes with a blood glucose-lowering effect in experimental diabetic animals, we found a potent bis(maltolato)zinc(II) complex, Zn(ma)2, exhibiting significant insulin-mimetic effects in a type 2 diabetic animal model. By using this Zn(ma)2 as the leading compound, we examined the in vitro and in vivo structure–activity relationships of Zn(ma)2 and its related complexes. The in vitro insulin-mimetic activity of these complexes was determined by the inhibition of free fatty acid release and the enhancement of glucose uptake in isolated rat adipocytes treated with epinephrine. A new Zn(II) complex with allixin isolated from garlic, Zn(alx)2, exhibited the highest insulin-mimetic activity among the complexes analyzed. The insulin-mimetic activity of the Zn(II) complexes examined strongly correlated (correlation coefficient=0.96) with the partition coefficient (logP) of the ligand, indicating that the activity of Zn(ma)2-related complexes depends on the lipophilicity of the ligand. The blood glucose-lowering effects of Zn(alx)2 and Zn(ma)2 were then compared, and both complexes were found to normalize hyperglycemia in KK-Ay mice after a 14-day course of daily intraperitoneal injections. However, Zn(alx)2 improved glucose tolerance in KK-Ay mice much more than did Zn(ma)2, indicating that Zn(alx)2 possesses greater in vivo anti-diabetic activity than Zn(ma)2. In addition, Zn(alx)2 improved leptin resistance and suppressed the progress of obesity in type 2 diabetic KK-Ay mice. On the basis of these observations, we conclude that the Zn(alx)2 complex is a novel potent candidate for the treatment of type 2 diabetes mellitus.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00775-004-0590-8  相似文献   
124.
125.
Thromboxane A2 receptor (TP) mediates bronchial smooth muscle cell (BSMC) contraction, airway hyperresponsiveness, and airway inflammation in patients with asthma. In the present study, a pathogenic role of TP activation in airway remodeling was examined using primary cultures of human BSMC. A TP agonist, I-BOP, concentration-dependently enhanced not only bromodeoxyuridine (BrdU) uptake but also cell proliferation of BSMC. A TP-selective antagonist, AA-2414, blocked the effects of I-BOP on both BrdU uptake and cell proliferation. I-BOP-induced BrdU uptake was significantly blocked by two non-selective tyrosine kinase inhibitors, genistein and herbimycin A, or a Src family tyrosine kinase inhibitor, PP2, but not by an inhibitor of epidermal growth factor (EGF) receptor-associated tyrosine kinase, AG1478. In conclusion, TP receptor activation causes DNA synthesis and cell proliferation of human BSMC by activating tyrosine kinases including Src, but not by EGF receptor transactivation.  相似文献   
126.
127.
128.
129.
Cytochrome P450 from thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain 7 (P450st) has been expressed in Escherichia coli and purified at high homogeneity. P450st was crystallized in an orthorhombic system with the space group P2(1)2(1)2(1) and cell dimensions of a=53.6 A, b=55.1 A, and c=130.9 A, and the structure was determined at a 3.0 A resolution. The final R-factor was 0.194 (Rfree=0.235). Structural comparison with cytochrome P450 from S. solfataricus (CYP119) suggests that the region composed of the F to G helices and the Cl- binding site is responsible for the affinity for a ligand coordinating heme iron. Direct electrochemistry of P450st in a didodecyldimethylammonium bromide (DDAB) film on a plastic formed carbon (PFC) electrode has also been demonstrated. A quasi-reversible redox response has been observed even at elevated temperatures of up to 80 degrees C.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号