首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2957篇
  免费   163篇
  国内免费   1篇
  2023年   11篇
  2022年   44篇
  2021年   45篇
  2020年   32篇
  2019年   60篇
  2018年   79篇
  2017年   68篇
  2016年   88篇
  2015年   134篇
  2014年   152篇
  2013年   253篇
  2012年   230篇
  2011年   254篇
  2010年   149篇
  2009年   133篇
  2008年   205篇
  2007年   179篇
  2006年   173篇
  2005年   147篇
  2004年   128篇
  2003年   122篇
  2002年   101篇
  2001年   33篇
  2000年   27篇
  1999年   26篇
  1998年   22篇
  1997年   22篇
  1996年   18篇
  1995年   22篇
  1994年   11篇
  1993年   13篇
  1992年   18篇
  1991年   16篇
  1990年   13篇
  1989年   12篇
  1988年   12篇
  1987年   10篇
  1986年   6篇
  1985年   10篇
  1984年   12篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1980年   4篇
  1979年   3篇
  1977年   3篇
  1976年   5篇
  1975年   3篇
  1966年   2篇
  1965年   1篇
排序方式: 共有3121条查询结果,搜索用时 375 毫秒
191.
192.
Cytosolic Ca(2+) elevations are known to be involved in triggering apoptosis in many tissues, but the effect of sustained enhancement of Ca(2+) influx on apoptosis in beta cells remains unknown. We have found that the viability of RINm5F cells is decreased dose-dependently by continuous exposure to glibenclamide at concentrations from 10(-7) to 10(-4) M, and that this effect is partially ameliorated by pretreatment with cycloheximide. Electrophoresis of the cells exposed to glibenclamide revealed ladder-like fragmentation characteristic of apoptosis, and which also is suppressed by cycloheximide pretreatment. By using terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining, we detected increased DNA fragmentation in the nuclei of the cells exposed to glibenclamide, and staining with Hoechst 33342 and propidium iodide showed a dose-dependent increase in the number of cells with the chromatin condensation and fragmentation in their nuclei that is characteristic of apoptosis. The effects of glibenclamide on cell viability and apoptotic cell death were partially inhibited by treatment with Ca(2+) channel blocker, and by reducing the extracellular Ca(2+) concentration during glibenclamide exposure, suggesting that they may be derived from increased Ca(2+) influx. Furthermore, only the percentage of apoptotic cells, and not that of necrotic cells, increased with the increasing intracellular Ca(2+) concentration during glibenclamide exposure. In conclusion, we have demonstrated that the sustained enhancement of Ca(2+) influx caused by glibenclamide exposure can induce apoptotic cell death in a pure beta cell line.  相似文献   
193.
194.
Abstract: Protein synthesis is important in the readaptive processes for cultured astrocytes after hypoxia and subsequent reoxygenation. We have identified 72-kDa inducible heat shock protein (HSP72) as a major stress protein in reoxygenated astrocytes. To assess the mechanism for reoxygenation-mediated induction of HSP72, a reporter gene that consists of a human HSP promoter fused to the luciferase gene was transfected into cultured astrocytes. Analysis of cellular energy nucleotides showed an increase of the ADP/ATP ratio after reoxygenation, which synchronized with activation of the HSP promoter. Activation of the HSP promoter was also observed after an addition of iodoacetic acid to hypoxic astrocytes, which reached the maximum when the ADP/ATP ratio reached 50%, but further decline in the energy profile caused inactivation of this promoter. Inhibition of protein synthesis after reoxygenation resulted in temporary restoration of the energy profile and suppression of the DNA binding activity of the heat shock factor. Addition of quercetin greatly decreased the [3H]leucine incorporation in the polysome fraction without any effect on the mature mRNA formation. These data suggest that the energy depletion in reoxygenation triggers induction of HSP72 after reoxygenation, which may act as a pivotal mediator in the stress response of reoxygenated astrocytes by facilitating protein synthesis.  相似文献   
195.
196.
197.
198.
199.
Cell-based therapies using genetically engineered lymphocytes expressing antigen-specific T cell receptors (TCRs) hold promise for the treatment of several types of cancers. Almost all studies using this modality have focused on transfer of TCR from CD8 cytotoxic T lymphocytes (CTLs). The transfer of TCR from innate lymphocytes to other lymphocytes has not been studied. In the current study, innate and adaptive lymphocytes were transfected with the human NKT cell-derived TCRα and β chain mRNA (the Vα24 and Vβ11 TCR chains). When primary T cells transfected with NKT cell-derived TCR were subsequently stimulated with the NKT ligand, α-galactosylceramide (α-GalCer), they secreted IFN-γ in a ligand-specific manner. Furthermore when γδT cells were transfected with NKT cell-derived TCR mRNA, they demonstrated enhanced proliferation, IFN-γ production and antitumor effects after α-GalCer stimulation as compared to parental γδT cells. Importantly, NKT cell TCR-transfected γδT cells responded to both NKT cell and γδT cell ligands, rendering them bi-potential innate lymphocytes. Because NKT cell receptors are unique and universal invariant receptors in humans, the TCR chains do not yield mispaired receptors with endogenous TCR α and β chains after the transfection. The transfection of NKT cell TCR has the potential to be a new approach to tumor immunotherapy in patients with various types of cancer.  相似文献   
200.
Radiation therapy (RT) is pivotal in the treatment of many central nervous system (CNS) pathologies; however, exposure to RT in children is associated with a higher risk of secondary CNS tumors. Although recent research interest has focused on the reparative and therapeutic role of microglia, their recruitment following RT has not been elucidated, especially in the developing CNS. Here, we investigated the spatiotemporal dynamics of microglia during tissue repair in the irradiated embryonic medaka brain by whole-mount in situ hybridization using a probe for Apolipoprotein E (ApoE), a marker for activated microglia in teleosts. Three-dimensional imaging of the distribution of ApoE-expressing microglia in the irradiated embryonic brain clearly showed that ApoE-expressing microglia were abundant only in the late phase of phagocytosis during tissue repair induced by irradiation, while few microglia expressed ApoE in the initial phase of phagocytosis. This strongly suggests that ApoE has a significant function in the late phase of phagocytosis by microglia in the medaka brain. In addition, the distribution of microglia in p53-deficient embryos at the late phase of phagocytosis was almost the same as in wild-type embryos, despite the low numbers of irradiation-induced apoptotic neurons, suggesting that constant numbers of activated microglia were recruited at the late phase of phagocytosis irrespective of the extent of neuronal injury. This medaka model of microglia demonstrated specific recruitment after irradiation in the developing CNS and could provide a useful potential therapeutic strategy to counteract the detrimental effects of RT.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号