首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   992篇
  免费   49篇
  国内免费   2篇
  2023年   17篇
  2022年   20篇
  2021年   23篇
  2020年   21篇
  2019年   22篇
  2018年   41篇
  2017年   27篇
  2016年   33篇
  2015年   33篇
  2014年   71篇
  2013年   53篇
  2012年   64篇
  2011年   105篇
  2010年   51篇
  2009年   39篇
  2008年   57篇
  2007年   57篇
  2006年   57篇
  2005年   46篇
  2004年   42篇
  2003年   30篇
  2002年   31篇
  2001年   16篇
  2000年   4篇
  1999年   9篇
  1997年   4篇
  1996年   7篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1986年   3篇
  1985年   6篇
  1984年   3篇
  1983年   5篇
  1981年   4篇
  1980年   1篇
  1979年   5篇
  1978年   1篇
  1977年   4篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1958年   1篇
  1931年   1篇
排序方式: 共有1043条查询结果,搜索用时 281 毫秒
31.
High-resolution experiments revealed that a single myosin-Va motor can transport micron-sized cargo on actin filaments in a stepwise manner. However, intracellular cargo transport is mediated through the dense actin meshwork by a team of myosin Va motors. The mechanism of how motors interact mechanically to bring about efficient cargo transport is still poorly understood. This study describes a stochastic model where a quantitative understanding of the collective behaviors of myosin Va motors is developed based on cargo stiffness. To understand how cargo properties affect the overall cargo transport, we have designed a model in which two myosin Va motors were coupled by wormlike chain tethers with persistence length ranging from 10 to 80 nm and contour length from 100 to 200 nm, and predicted distributions of velocity, run length, and tether force. Our analysis showed that these parameters are sensitive to both the contour and persistence length of cargo. While the velocity of two couple motors is decreased compared to a single motor (from 531 ± 251 nm/s to as low as 318 ± 287 nm/s), the run length (716 ± 563 nm for a single motor) decreased for short, rigid tethers (to as low as 377 ± 187 μm) and increased for long, flexible tethers (to as high as 1.74 ± 1.50 μm). The sensitivity of processive properties to tether rigidity (persistence length) was greatest for short tethers, which caused the motors to exhibit close, yet anti-cooperative coordination. Motors coupled by longer tethers stepped more independently regardless of tether rigidity. Therefore, the properties of the cargo or linkage must play an essential role in motor-motor communication and cargo transport.  相似文献   
32.
Although important for cellular stress signaling pathways, the molecular mechanisms of acid sphingomyelinase (ASMase) activation remain poorly understood. Previous studies showed that treatment of MCF-7 mammary carcinoma cells with the potent protein kinase C (PKC) agonist, phorbol 12-myristate 13-acetate (PMA), induces a transient drop in sphingomyelin concomitant with an increase in cellular ceramide levels (Becker, K. P., Kitatani, K., Idkowiak-Baldys, J., Bielawski, J., and Hannun, Y. A. (2005) J. Biol. Chem. 280, 2606-2612). Here we show that PMA selectively activates ASMase and that ASMase accounts for the majority of PMA-induced ceramide. Pharmacologic inhibition and RNA interference experiments indicated that the novel PKC, PKCdelta, is required for ASMase activation. Immunoprecipitation experiments revealed the formation of a novel PKCdelta-ASMase complex after PMA stimulation, and PKCdelta was able to phosphorylate ASMase in vitro and in cells. Using site-directed mutagenesis, we identify serine 508 as the key residue phosphorylated in response to PMA. Phosphorylation of Ser(508) proved to be an indispensable step for ASMase activation and membrane translocation in response to PMA. The relevance of the proposed mechanism of ASMase regulation is further validated in a model of UV radiation. UV radiation also induced phosphorylation of ASMase at serine 508. Moreover, when transiently overexpressed, ASMase(S508A) blocked the ceramide formation after PMA treatment, suggesting a dominant negative function for this mutant. Taken together, these results establish a novel direct biochemical mechanism for ASMase activation in which PKCdelta serves as a key upstream kinase.  相似文献   
33.
In Vitro Cellular & Developmental Biology - Plant - Plants that produce bioactive chemicals provide a viable in vitro method for producing key nutraceutical substances, especially in the...  相似文献   
34.
Role of β3-AR dysregulation, as either cardio-conserving or cardio-disrupting mediator, remains unknown yet. Therefore, we examined the molecular mechanism of β3-AR activation in depressed myocardial contractility using a specific agonist CL316243 or using β3-AR overexpressed cardiomyocytes. Since it has been previously shown a possible correlation between increased cellular free Zn2+ ([Zn2+]i) and depressed cardiac contractility, we first demonstrated a relation between β3-AR activation and increased [Zn2+]i, parallel to the significant depolarization in mitochondrial membrane potential in rat ventricular cardiomyocytes. Furthermore, the increased [Zn2+]i induced a significant increase in messenger RNA (mRNA) level of β3-AR in cardiomyocytes. Either β3-AR activation or its overexpression could increase cellular reactive oxygen species (ROS) and reactive nitrogen species (RNS) levels, in line with significant changes in nitric oxide (NO)-pathway, including increases in the ratios of pNOS3/NOS3 and pGSK-3β/GSK-3β, and PKG expression level in cardiomyocytes. Although β3-AR activation induced depression in both Na+- and Ca2+-currents, the prolonged action potential (AP) seems to be associated with a marked depression in K+-currents. The β3-AR activation caused a negative inotropic effect on the mechanical activity of the heart, through affecting the cellular Ca2+-handling, including its effect on Ca2+-leakage from sarcoplasmic reticulum (SR). Our cellular level data with β3-AR agonism were supported with the data on high [Zn2+]i and β3-AR protein-level in metabolic syndrome (MetS)-rat heart. Overall, our present data can emphasize the important deleterious effect of β3-AR activation in cardiac remodeling under pathological condition, at least, through a cross-link between β3-AR activation, NO-signaling, and [Zn2+]i pathways. Moreover, it is interesting to note that the recovery in ER-stress markers with β3-AR agonism in hyperglycemic cardiomyocytes is favored. Therefore, how long and to which level the β3-AR agonism would be friend or become foe remains to be mystery, yet.  相似文献   
35.
The unfolded protein response (UPR) contributes to chlamydial pathogenesis, as a source of lipids and ATP during replication, and for establishing the initial anti-apoptotic state of host cell that ensures successful inclusion development. The molecular mechanism(s) of UPR induction by Chlamydia is unknown. Chlamydia use type III secretion system (T3SS) effector proteins (e.g, the Translocated Actin-Recruiting Phosphoprotein (Tarp) to stimulate host cell's cytoskeletal reorganization that facilitates invasion and inclusion development. We investigated the hypothesis that T3SS effector-mediated assembly of myosin-II complex produces activated non-muscle myosin heavy chain II (NMMHC-II), which then binds the UPR master regulator (BiP) and/or transducers to induce UPR. Our results revealed the interaction of the chlamydial effector proteins (CT228 and Tarp) with components of the myosin II complex and UPR regulator and transducer during infection. These interactions caused the activation and binding of NMMHC-II to BiP and IRE1α leading to UPR induction. In addition, specific inhibitors of myosin light chain kinase, Tarp oligomerization and myosin ATPase significantly reduced UPR activation and Chlamydia replication. Thus, Chlamydia induce UPR through T3SS effector-mediated activation of NMMHC-II components of the myosin complex to facilitate infectivity. The finding provides greater insights into chlamydial pathogenesis with the potential to identify therapeutic targets and formulations.  相似文献   
36.
Yusuf  Mohammed  Kaneyoshi  Kohei  Fukui  Kiichi  Robinson  Ian 《Chromosoma》2019,128(1):7-13
Chromosoma - The high-order structure of metaphase chromosomes remains still under investigation, especially the 30-nm structure that is still controversial. Advanced 3D imaging has provided useful...  相似文献   
37.
Molecular Biology Reports - Lantana camara is an important medicinal plant that contains many active compounds, including pentacyclic triterpenoids, with numerous biological activities. The present...  相似文献   
38.
BackgroundFamily involvement in overcoming the severity of leprosy is very important in the life of leprosy sufferers in communities who experience the clinical and, psychological, social and behavioral consequences of the disease. However, this need, psychosocial, is felt to be not optimal. This study is to identify how the experiences of family members as caregivers provide assistance to individuals with leprosy in improving healing and maintaining patterns of interaction in the family.MethodsThe design uses qualitative research with in-depth, face-to-face interviews with family members in a semi-structured manner with the hope of obtaining complete data. Using purposive sampling with Participatory Interpretative Phenomenology analysis, there are 12 families with 15 family members consisting of 4 men and 11 women.ResultsThis study produced a family theme that tried to follow what would happen to individuals with leprosy, with four sub-categories: 1) Using various coping alternatives to recognize the disease, 2) Family members in the shadow of leprosy, 3) Trying to empathize with other family members. sick, 4) Caring for the emotional response of the family and seeking support.ConclusionsThis analysis shows that deficiency in cognitive aspects can be closed by maintaining a lifestyle in the family through efforts to understand, support, establish communication, increase maximum involvement in restoring self-confidence, especially in individuals with leprosy with psychosocial problems in the family. The results of this study can be used as psychosocial support in maintaining communication between family members to support treatment programs and accelerate the recovery of leprosy.  相似文献   
39.
The complex life of simple sphingolipids   总被引:12,自引:0,他引:12       下载免费PDF全文
The extensive diversity of membrane lipids is rarely appreciated by cell and molecular biologists. Although most researchers are familiar with the three main classes of lipids in animal cell membranes, few realize the enormous combinatorial structural diversity that exists within each lipid class, a diversity that enables functional specialization of lipids. In this brief review, we focus on one class of membrane lipids, the sphingolipids, which until not long ago were thought by many to be little more than structural components of biological membranes. Recent studies have placed sphingolipids-including ceramide, sphingosine and sphingosine-1-phosphate-at the centre of a number of important biological processes, specifically in signal transduction pathways, in which their levels change in a highly regulated temporal and spatial manner. We outline exciting progress in the biochemistry and cell biology of sphingolipids and focus on their functional diversity. This should set the conceptual and experimental framework that will eventually lead to a fully integrated and comprehensive model of the functions of specific sphingolipids in regulating defined aspects of cell physiology.  相似文献   
40.
AIM: Weill-Marchesani syndrome (WMS) is a rare systemic disorder with both autosomal recessive and dominant inheritances. Accumulation of reactive oxygen species such as O2*-, H2O2 and OH* causes lipid peroxidation (LPO), whereas antioxidant enzymes (superoxide dismutase (SOD), glutathione peroxidase (GSHPx)) mediate defence against oxidative stress. Excess tumour necrosis factor (TNF)-alpha and NO* react with O2*- and cause further antioxidant depletion with an increase in mutation frequency by H2O2. This study investigated the levels of SOD, GSHPx, catalase (CAT), TNF-alpha, NO and LPO in patients with WMS. METHODS: A group of 10 WMS patients (four males, six females; age, 26.5+/-19.0 years) and 10 age-matched and sex-matched controls (five males, five females; age, 27.3+/-18.2 years) were included. Serum TNF-alpha levels were determined by a spectrophotometer technique using immulite chemiluminescent immunometric assay. Malondialdehyde (MDA) was determined in plasma; CAT in red blood cells (RBCs), and SOD and GSHPx in both plasma and RBCs. Total serum NO* levels were evaluated by Griess reaction. RESULTS: Mean levels of TNF-alpha (8.3+/-0.6 pg/ml) in WMS patients were significantly (p<0.001) higher than controls (4.3+/-0.2 pg/ml). Plasma MDA levels in patients and controls were 5.4+/-0.8 and 1.8+/-0.6 micromol/l, respectively, and the difference was significant (p=0.0002). SOD and GSHPx activities were significantly lower in both RBCs and plasma of WMS than in controls (RBC-SOD, 3981.9+/-626.6 versus 5261.6+/-523.0 U/g haemoglobin (Hb), p=0.0005; plasma-SOD, 529.4+/-49.3 versus 713.4+/-55.7 U/g protein, p=0.0002; RBC-GSHPx, 682.7+/-42.0 versus 756.5+/-47.6 U/g Hb, p=0.0011; plasma-GSHPx, 107.3+/-15.0 versus 131.4+/-19.7 U/g protein, p=0.0113). In addition, serum NO (NO*-2 + NO*-3) levels were also significantly (p = 0.0002) increased in WMS patients (54.4+/-5.7 versus 26.9+/-6.7 micromol/l). RBC-CAT levels were similar between groups (125.6+/-21.3 versus 131.0+/-21.5 k/g Hb, p = 0.8798). CONCLUSIONS: The elevated LPO, TNF-alpha and NO* with decreased antioxidant enzyme activities indicated impaired antioxidative defence mechanisms with an oxidative injury and cell toxicity in WMS patients. The use of multiple antioxidants and free radical scavengers might be helpful in this genetic disorder.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号