首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1898篇
  免费   73篇
  2022年   10篇
  2021年   32篇
  2020年   23篇
  2019年   24篇
  2018年   45篇
  2017年   47篇
  2016年   51篇
  2015年   51篇
  2014年   58篇
  2013年   85篇
  2012年   99篇
  2011年   110篇
  2010年   70篇
  2009年   65篇
  2008年   97篇
  2007年   117篇
  2006年   75篇
  2005年   68篇
  2004年   80篇
  2003年   73篇
  2002年   70篇
  2001年   50篇
  2000年   31篇
  1999年   38篇
  1998年   11篇
  1996年   10篇
  1992年   26篇
  1991年   30篇
  1990年   40篇
  1989年   24篇
  1988年   24篇
  1987年   21篇
  1986年   20篇
  1985年   28篇
  1984年   17篇
  1983年   12篇
  1982年   10篇
  1979年   16篇
  1978年   14篇
  1976年   9篇
  1975年   21篇
  1974年   15篇
  1973年   12篇
  1972年   12篇
  1971年   14篇
  1969年   12篇
  1968年   9篇
  1967年   15篇
  1966年   13篇
  1965年   9篇
排序方式: 共有1971条查询结果,搜索用时 359 毫秒
991.
Here, we describe high-resolution X-ray structures of Escherichia coli inorganic pyrophosphatase (E-PPase) complexed with the substrate, magnesium, or manganese pyrophosphate. The structures correspond to steps in the catalytic synthesis of enzyme-bound pyrophosphate (PP(i)) in the presence of fluoride as an inhibitor of hydrolysis. The catalytic reaction intermediates were trapped applying a new method that we developed for initiating hydrolytic activity in the E-PPase crystal. X-ray structures were obtained for three consecutive states of the enzyme in the course of hydrolysis. Comparative analysis of these structures showed that the Mn2+-supported hydrolysis of the phosphoanhydride bond is followed by a fast release of the leaving phosphate from the P1 site. The electrophilic phosphate P2 is trapped in the "down" conformation. Its movement into the "up" position most likely represents the rate-limiting step of Mn2+-supported hydrolysis. We further determined the crystal structure of the Arg43Gln mutant variant of E-PPase complexed with one phosphate and four Mn ions.  相似文献   
992.
The release of human immunodeficiency virus type 1 (HIV-1) and of other retroviruses from certain cells requires the presence of distinct regions in Gag that have been termed late assembly (L) domains. HIV-1 harbors a PTAP-type L domain in the p6 region of Gag that engages an endosomal budding machinery through Tsg101. In addition, an auxiliary L domain near the C terminus of p6 binds to ALIX/AIP1, which functions in the same endosomal sorting pathway as Tsg101. In the present study, we show that the profound release defect of HIV-1 L domain mutants can be completely rescued by increasing the cellular expression levels of ALIX and that this rescue depends on an intact ALIX binding site in p6. Furthermore, the ability of ALIX to rescue viral budding in this system depended on two putative surface-exposed hydrophobic patches on its N-terminal Bro1 domain. One of these patches mediates the interaction between ALIX and the ESCRT-III component CHMP4B, and mutations which disrupt the interaction also abolish the activity of ALIX in viral budding. The ability of ALIX to rescue a PTAP mutant also depends on its C-terminal proline-rich domain (PRD), but not on the binding sites for Tsg101, endophilin, CIN85, or for the newly identified binding partner, CMS, within the PRD. Our data establish that ALIX can have a dramatic effect on HIV-1 release and suggest that the ability to use ALIX may allow HIV-1 to replicate in cells that express only low levels of Tsg101.  相似文献   
993.
Functional motifs within the cytoplasmic tails of the two glycoproteins G(N) and G(C) of Uukuniemi virus (UUK) (Bunyaviridae family) were identified with the help of our recently developed virus-like particle (VLP) system for UUK virus (A. K. Overby, V. Popov, E. P. Neve, and R. F. Pettersson, J. Virol. 80:10428-10435, 2006). We previously reported that information necessary for the packaging of ribonucleoproteins into VLPs is located within the G(N) cytoplasmic tail (A. K. Overby, R. F. Pettersson, and E. P. Neve, J. Virol. 81:3198-3205, 2007). The G(N) glycoprotein cytoplasmic tail specifically interacts with the ribonucleoproteins and is critical for genome packaging. In addition, two other regions in the G(N) cytoplasmic tail, encompassing residues 21 to 25 and 46 to 50, were shown to be important for particle generation and release. By the introduction of point mutations within these two regions, we demonstrate that leucines at positions 23 and 24 are crucial for the initiation of VLP budding, while leucine 46, glutamate 47, and leucine 50 are important for efficient exit from the endoplasmic reticulum and subsequent transport to the Golgi complex. We found that budding and particle generation are highly dependent on the intracellular localization of both glycoproteins. The short cytoplasmic tail of UUK G(C) contains a lysine at position -3 from the C terminus that is highly conserved among members of the Phlebovirus, Hantavirus, and Orthobunyavirus genera. Mutating this single amino acid residue in G(C) resulted in the mislocalization of not only G(C) but also G(N) to the plasma membrane, and VLP generation was compromised in cells expressing this mutant. Together, these results demonstrate that the cytoplasmic tails of both G(N) and G(C) contain specific information necessary for efficient virus particle generation.  相似文献   
994.
In vivo amyloid formation is a widespread phenomenon in eukaryotes. Self-perpetuating amyloids provide a basis for the infectious or heritable protein isoforms (prions). At least for some proteins, amyloid-forming potential is conserved in evolution despite divergence of the amino acid (aa) sequences. In some cases, prion formation certainly represents a pathological process leading to a disease. However, there are several scenarios in which prions and other amyloids or amyloid-like aggregates are either shown or suspected to perform positive biological functions. Proven examples include self/nonself recognition, stress defense and scaffolding of other (functional) polymers. The role of prion-like phenomena in memory has been hypothesized. As an additional mechanism of heritable change, prion formation may in principle contribute to heritable variability at the population level. Moreover, it is possible that amyloid-based prions represent by-products of the transient feedback regulatory circuits, as normal cellular function of at least some prion proteins is decreased in the prion state.Key Words: amyloid, amyloidosis, epigenetic, evolution, inheritance, mammals, misfolding, protein, stress, yeast  相似文献   
995.
Cross‐beta fibrous protein aggregates (amyloids and amyloid‐based prions) are found in mammals (including humans) and fungi (including yeast), and are associated with both diseases and heritable traits. The Hsp104/70/40 chaperone machinery controls propagation of yeast prions. The Hsp70 chaperones Ssa and Ssb show opposite effects on [PSI+], a prion form of the translation termination factor Sup35 (eRF3). Ssb is bound to translating ribosomes via ribosome‐associated complex (RAC), composed of Hsp40‐Zuo1 and Hsp70‐Ssz1. Here we demonstrate that RAC disruption increases de novo prion formation in a manner similar to Ssb depletion, but interferes with prion propagation in a manner similar to Ssb overproduction. Release of Ssb into the cytosol in RAC‐deficient cells antagonizes binding of Ssa to amyloids. Thus, propagation of an amyloid formed because of lack of ribosome‐associated Ssb can be counteracted by cytosolic Ssb, generating a feedback regulatory circuit. Release of Ssb from ribosomes is also observed in wild‐type cells during growth in poor synthetic medium. Ssb is, in a significant part, responsible for the prion destabilization in these conditions, underlining the physiological relevance of the Ssb‐based regulatory circuit.  相似文献   
996.
Acute hepatitis results from oxidative stress triggered by hepatotoxic drugs causing liver injury and the activation of caspases cascade. The glutathione antioxidant system protects against reactive oxygen species and mitigates development of these processes. The effectiveness of silymarin, a polyphenolic flavonoid, essenthiale, composed of phosphatidyl choline, and melaxen, a melatonin‐correcting drug, as hepatoprotectors has been investigated. The variation of 6‐sulfatoxymelatonin (aMT6s), resulting from the biotransformation of melatonin, and GSH has been measured. The activities of caspase‐1 and caspase‐3, glutathione antioxidant system, and NADPH‐generating enzymes were determined. The aMT6s decreases in patients with drug hepatitis and recovers with administration of mexalen. GSH increased in the presence of the studied hepatoprotectors. Pathologically activated caspase‐1 and caspase‐3 decreased their activities in the presence of hepatoprotectors with melaxen showing the highest effect. The positive effect of melatonin appears to be related to the suppression of decompensation of the glutathione antioxidant system functions, recovery of liver redox status, and the attenuation of inhibition of the NADPH supply.  相似文献   
997.
Popov  A. M.  Osipov  A. N.  Korepanova  E. A.  Klimovich  A. A.  Styshova  O. N.  Artyukov  A. A. 《Biophysics》2019,64(4):543-550
Biophysics - Abstract—The phenolic compound purpurogallin (PPG) is found in oak nutgalls and is a red pigment with a benzotropolone ring structure. PPG shows pronounced cytoprotective and...  相似文献   
998.
999.

Aims

Disturbance of mitochondrial function significantly contributes to the myocardial injury that occurs during reperfusion. Increasing evidence suggests a role of intra-mitochondrial cyclic AMP (cAMP) signaling in promoting respiration and ATP synthesis. Mitochondrial levels of cAMP are controlled by type 10 soluble adenylyl cyclase (sAC) and phosphodiesterase 2 (PDE2), however their role in the reperfusion-induced injury remains unknown. Here we aimed to examine whether sAC may support cardiomyocyte survival during reperfusion.

Methods and results

Adult rat cardiomyocytes or rat cardiac H9C2 cells were subjected to metabolic inhibition and recovery as a model of simulated ischemia and reperfusion. Cytosolic Ca2+, pH, mitochondrial cAMP (live-cell imaging), and cell viability were analyzed during a 15-min period of reperfusion. Suppression of sAC activity in cardiomyocytes and H9C2 cells, either by sAC knockdown, by pharmacological inhibition or by withdrawal of bicarbonate, a natural sAC activator, compromised cell viability and recovery of cytosolic Ca2+ homeostasis during reperfusion. Contrariwise, overexpression of mitochondria-targeted sAC in H9C2 cells suppressed reperfusion-induced cell death. Analyzing cAMP concentration in mitochondrial matrix we found that inhibition of PDE2, a predominant mitochondria-localized PDE isoform in mammals, during reperfusion significantly increased cAMP level in mitochondrial matrix, but not in cytosol. Accordingly, PDE2 inhibition attenuated reperfusion-induced cardiomyocyte death and improved recovery of the cytosolic Ca2+ homeostasis.

Conclusion

sAC plays an essential role in supporting cardiomyocytes viability during reperfusion. Elevation of mitochondrial cAMP pool either by sAC overexpression or by PDE2 inhibition beneficially affects cardiomyocyte survival during reperfusion.  相似文献   
1000.
Microbe Russian Anti-Plague Research Institute, Saratov A hybrid plasmid pUB110PA-1 demonstrating stable functioning in the cells of Bacillus strains and containing the gene of biosynthesis of Bacillus anthracis protective antigen was constructed. The recombinant strains surpassing the anthrax vaccinal cultures in the secreted synthesis of the protective antigen were obtained and their immunological efficacy was assessed. A single inoculation of Guinea pigs with the dose of 5 x 107 spores of the recombinant strains imparted efficient protection against B. anthracis challenge. Immune responses were characterized by high indices of immunity and titers of antibodies to the protective antigen. In contrast to the anthrax vaccinal preparations, the gene-engineering strains imposed no residual virulence for BALB/n mice and Guinea pigs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号