首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1901篇
  免费   73篇
  2022年   13篇
  2021年   32篇
  2020年   23篇
  2019年   24篇
  2018年   45篇
  2017年   47篇
  2016年   51篇
  2015年   51篇
  2014年   58篇
  2013年   85篇
  2012年   99篇
  2011年   110篇
  2010年   70篇
  2009年   65篇
  2008年   97篇
  2007年   117篇
  2006年   75篇
  2005年   68篇
  2004年   80篇
  2003年   73篇
  2002年   70篇
  2001年   50篇
  2000年   31篇
  1999年   38篇
  1998年   11篇
  1996年   10篇
  1992年   26篇
  1991年   30篇
  1990年   40篇
  1989年   24篇
  1988年   24篇
  1987年   21篇
  1986年   20篇
  1985年   28篇
  1984年   17篇
  1983年   12篇
  1982年   10篇
  1979年   16篇
  1978年   14篇
  1976年   9篇
  1975年   21篇
  1974年   15篇
  1973年   12篇
  1972年   12篇
  1971年   14篇
  1969年   12篇
  1968年   9篇
  1967年   15篇
  1966年   13篇
  1965年   9篇
排序方式: 共有1974条查询结果,搜索用时 125 毫秒
951.
Physical, chemical, and regulatory properties of glycolate oxidase (GO) isolated from the leaves of C4 and C3 plants (Zea mays L., cv. Voronezhskaya 76 and Glycine max (L.) Merr., cv. Pripyat’, respectively) were studied. The homogenous preparations were obtained by multistage enzyme purification from soybean leaves and maize mesophyll and bundle sheath. The glycolate oxidase (GO) preparations obtained consisted of two types of subunits, 37 and 44 kD. The GO isolated from C3 plant leaves had many in common with that extracted from C4 plant bundle sheath as regards physical, chemical, and catalytic properties. The primary function of GO in both plant types is metabolism of glycolate, which is a product of ribulosebisphosphate oxalacetic acid oxidation and is used by plants for biosynthesis of hydrocarbons and amino acids.  相似文献   
952.

Background

Recent understanding that insulin resistance is an inflammatory condition necessitates searching for genes that regulate inflammation in insulin sensitive tissues. 12/15-lipoxygenase (12/15LO) regulates the expression of proinflammatory cytokines and chemokines and is implicated in the early development of diet-induced atherosclerosis. Thus, we tested the hypothesis that 12/15LO is involved in the onset of high fat diet (HFD)-induced insulin resistance.

Methodology/Principal Findings

Cells over-expressing 12/15LO secreted two potent chemokines, MCP-1 and osteopontin, implicated in the development of insulin resistance. We assessed adipose tissue inflammation and whole body insulin resistance in wild type (WT) and 12/15LO knockout (KO) mice after 2–4 weeks on HFD. In adipose tissue from WT mice, HFD resulted in recruitment of CD11b+, F4/80+ macrophages and elevated protein levels of the inflammatory markers IL-1β, IL-6, IL-10, IL-12, IFNγ, Cxcl1 and TNFα. Remarkably, adipose tissue from HFD-fed 12/15LO KO mice was not infiltrated by macrophages and did not display any increase in the inflammatory markers compared to adipose tissue from normal chow-fed mice. WT mice developed severe whole body (hepatic and skeletal muscle) insulin resistance after HFD, as measured by hyperinsulinemic euglycemic clamp. In contrast, 12/15LO KO mice exhibited no HFD-induced change in insulin-stimulated glucose disposal rate or hepatic glucose output during clamp studies. Insulin-stimulated Akt phosphorylation in muscle tissue from HFD-fed mice was significantly greater in 12/15LO KO mice than in WT mice.

Conclusions

These results demonstrate that 12/15LO mediates early stages of adipose tissue inflammation and whole body insulin resistance induced by high fat feeding.  相似文献   
953.
We demonstrate a suppression of ROS production and uncoupling of mitochondria by exogenous citrate in Mg2+ free medium. Exogenous citrate suppressed H2O2 emission and depolarized mitochondria. The depolarization was paralleled by the stimulation of respiration of mitochondria. The uncoupling action of citrate was independent of the presence of sodium, potassium, or chlorine ions, and it was not mediated by the changes in permeability of the inner mitochondrial membrane to solutes. The citrate transporter was not involved in the citrate effect. Inhibitory analysis data indicated that several well described mitochondria carriers and channels (ATPase, IMAC, ADP/ATP translocase, mPTP, mKATP) were not involved in citrate’s effect. Exogenous MgCl2 strongly inhibited citrate-induced depolarization. The uncoupling effect of citrate was demonstrated in rat brain, mouse brain, mouse liver, and human melanoma cells mitochondria. We interpreted the data as an evidence to the existence of a hitherto undescribed putative inner mitochondrial membrane channel that is regulated by extramitochondrial Mg2+ or other divalent cations.  相似文献   
954.

Background

Intra-host hepatitis C virus (HCV) populations are genetically heterogeneous and organized in subpopulations. With the exception of blood transfusions, transmission of HCV occurs via a small number of genetic variants, the effect of which is frequently described as a bottleneck. Stochasticity of transmission associated with the bottleneck is usually used to explain genetic differences among HCV populations identified in the source and recipient cases, which may be further exacerbated by intra-host HCV evolution and differential biological capacity of HCV variants to successfully establish a population in a new host.

Results

Transmissibility was formulated as a property that can be measured from experimental Ultra-Deep Sequencing (UDS) data. The UDS data were obtained from one large hepatitis C outbreak involving an epidemiologically defined source and 18 recipient cases. k-Step networks of HCV variants were constructed and used to identify a potential association between transmissibility and network centrality of individual HCV variants from the source. An additional dataset obtained from nine other HCV outbreaks with known directionality of transmission was used for validation.Transmissibility was not found to be dependent on high frequency of variants in the source, supporting the earlier observations of transmission of minority variants. Among all tested measures of centrality, the highest correlation of transmissibility was found with Hamming centrality (r?=?0.720; p?=?1.57 E-71). Correlation between genetic distances and differences in transmissibility among HCV variants from the source was found to be 0.3276 (Mantel Test, p?=?9.99 E-5), indicating association between genetic proximity and transmissibility. A strong correlation ranging from 0.565–0.947 was observed between Hamming centrality and transmissibility in 7 of the 9 additional transmission clusters (p?<?0.05).

Conclusions

Transmission is not an exclusively stochastic process. Transmissibility, as formally measured in this study, is associated with certain biological properties that also define location of variants in the genetic space occupied by the HCV strain from the source. The measure may also be applicable to other highly heterogeneous viruses. Besides improving accuracy of outbreak investigations, this finding helps with the understanding of molecular mechanisms contributing to establishment of chronic HCV infection.
  相似文献   
955.

Background

RNA viruses such as HCV and HIV mutate at extremely high rates, and as a result, they exist in infected hosts as populations of genetically related variants. Recent advances in sequencing technologies make possible to identify such populations at great depth. In particular, these technologies provide new opportunities for inference of relatedness between viral samples, identification of transmission clusters and sources of infection, which are crucial tasks for viral outbreaks investigations.

Results

We present (i) an evolutionary simulation algorithm Viral Outbreak InferenCE (VOICE) inferring genetic relatedness, (ii) an algorithm MinDistB detecting possible transmission using minimal distances between intra-host viral populations and sizes of their relative borders, and (iii) a non-parametric recursive clustering algorithm Relatedness Depth (ReD) analyzing clusters’ structure to infer possible transmissions and their directions. All proposed algorithms were validated using real sequencing data from HCV outbreaks.

Conclusions

All algorithms are applicable to the analysis of outbreaks of highly heterogeneous RNA viruses. Our experimental validation shows that they can successfully identify genetic relatedness between viral populations, as well as infer transmission clusters and outbreak sources.
  相似文献   
956.

Background

Hepatitis C is a major public health problem in the United States and worldwide. Outbreaks of hepatitis C virus (HCV) infections associated with unsafe injection practices, drug diversion, and other exposures to blood are difficult to detect and investigate. Molecular analysis has been frequently used in the study of HCV outbreaks and transmission chains; helping identify a cluster of sequences as linked by transmission if their genetic distances are below a previously defined threshold. However, HCV exists as a population of numerous variants in each infected individual and it has been observed that minority variants in the source are often the ones responsible for transmission, a situation that precludes the use of a single sequence per individual because many such transmissions would be missed.The use of Next-Generation Sequencing immensely increases the sensitivity of transmission detection but brings a considerable computational challenge because all sequences need to be compared among all pairs of samples.

Methods

We developed a three-step strategy that filters pairs of samples according to different criteria: (i) a k-mer bloom filter, (ii) a Levenhstein filter and (iii) a filter of identical sequences. We applied these three filters on a set of samples that cover the spectrum of genetic relationships among HCV cases, from being part of the same transmission cluster, to belonging to different subtypes.

Results

Our three-step filtering strategy rapidly removes 85.1% of all the pairwise sample comparisons and 91.0% of all pairwise sequence comparisons, accurately establishing which pairs of HCV samples are below the relatedness threshold.

Conclusions

We present a fast and efficient three-step filtering strategy that removes most sequence comparisons and accurately establishes transmission links of any threshold-based method. This highly efficient workflow will allow a faster response and molecular detection capacity, improving the rate of detection of viral transmissions with molecular data.
  相似文献   
957.
Colorectal cancer is the second most common cancer in women and third most common cancer in men. Cell signaling alterations in colon cancer, especially in aggressive metastatic tumors, require further investigations. The present study aims to compare the expression pattern of proteins associated with cell signaling in paired tumor and non-tumor samples of patients with colon cancer, as well as to define the cluster of proteins to differentiate patients with non-metastatic (Dukes’ grade B) and metastatic (Dukes’ grade C&D) colon cancer. Frozen tumor and non-tumor samples were collected after tumor resection from 19 patients with colon cancer. The Panorama? Antibody Microarray-Cell Signaling kits were used for the analyses. The expression ratios of paired tumor/non-tumor samples were calculated for the each protein. We employed R packages ‘samr’, ‘gplots’, ‘supclust’ (pelora, wilma algorithms), ‘glmnet’ for the differential expression analysis, supervised clustering and penalized logistic regression. Significance analysis of microarrays revealed 9 significantly up-regulated proteins, including protein kinase C gamma, c-Myc, MDM2, pan cytokeratin, and 1 significantly down-regulated protein (GAP1) in tumoral mucosa. Pan-cytokeratin and APP were up-regulated in tumor versus non-tumor tissue, and were selected in the predictive cluster to discriminate colon cancer type. Higher levels of S-100b and phospho-Tau-pSer199/202 were confirmed as the predictors of non-metastatic colon cancer by all employed regression/clustering methods. Deregulated proteins in colon cancer are involved in oncogenic signal transduction, cell cycle control, and regulation of cytoskeleton/transport. Further studies are needed to validate potential protein markers of colon cancer development and metastatic progression.  相似文献   
958.
Well‐preserved juvenile specimens of the orthotetide brachiopod Coolinia pecten (Linnaeus, 1758 ) from the Silurian of Gotland, Sweden, demonstrate evidence of a planktotrophic larval habit. Larval shell morphology indicates the absence of a pedicle sheath: this character is otherwise typical of derived billingsellides, strophomenides and productides, which form the conventional strophomenide clade. The presence of a rudimentary colleplax structure in the larval shell of Colinia suggests instead a phylogenetic link to chiliate brachiopods and the enigmatic genus Salanygolina. This relationship suggests an early divergence of rhynchonellate and strophomenate brachiopods.  相似文献   
959.
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号