首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   452篇
  免费   43篇
  2023年   2篇
  2022年   3篇
  2021年   14篇
  2020年   5篇
  2019年   11篇
  2018年   17篇
  2017年   16篇
  2016年   19篇
  2015年   25篇
  2014年   20篇
  2013年   30篇
  2012年   43篇
  2011年   41篇
  2010年   26篇
  2009年   22篇
  2008年   20篇
  2007年   37篇
  2006年   20篇
  2005年   22篇
  2004年   22篇
  2003年   19篇
  2002年   16篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   6篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1980年   5篇
  1979年   1篇
  1978年   2篇
  1975年   1篇
排序方式: 共有495条查询结果,搜索用时 46 毫秒
51.
52.
53.
A recently recognized human rhinovirus species C (HRV-C) is associated with up to half of HRV infections in young children. Here we propagated two HRV-C isolates ex vivo in organ culture of nasal epithelial cells, sequenced a new C15 isolate and developed the first, to our knowledge, reverse genetics system for HRV-C. Using contact points for the known HRV receptors, intercellular adhesion molecule-1 (ICAM-1) and low-density lipoprotein receptor (LDLR), inter- and intraspecies footprint analyses predicted a unique cell attachment site for HRV-Cs. Antibodies directed to binding sites for HRV-A and -B failed to inhibit HRV-C attachment, consistent with the alternative receptor footprint. HRV-A and HRV-B infected HeLa and WisL cells but HRV-C did not. However, HRV-C RNA synthesized in vitro and transfected into both cell types resulted in cytopathic effect and recovery of functional virus, indicating that the viral attachment mechanism is a primary distinguishing feature of HRV-C.  相似文献   
54.
55.
Medium nutrients such as calcium, phosphorus, nitrogen and nitrate to ammonium ratio have significant influence on the growth, biosynthetic and biochemical characteristics of polysaccharides produced by Silene vulgaris (M.) G. cell culture. Cell growth and production of polysaccharides was limited by an absence of any of these components in the medium. Optimal growth of the callus and production of arabinogalactan were achieved at 1.5-4.5 microM calcium while the optimal production of pectin named silenan was observed at 3.0-4.5 microM. The phosphate contents in the medium in the range of 0.63-3.75 microM were favorable for callus growth. Production of silenan was maximal at 1.25-3.75 microM phosphate. Optimal growth of the callus was achieved at 30-90 microM nitrogen. Maximal production of silenan was observed at 60 microM nitrogen while the optimal production of arabinogalactan was at 90 microM nitrogen (at ratio of NH(4)(+):NO(3)(-) as 1:2). A presence both of nitrate and ammonium is needed for the silenan biosynthesis (the NH(4)(+):NO(3)(-) ratio as 1:1 and 1:2). Yields and volumetric production of arabinogalactan were maximal at deletion of ammonium from the nutrient medium (ratio 0:1). Absence of calcium or nitrogen in the medium leads to a decrease of the galacturonic acid residues in silenan. The galactose residues contents in arabinogalactan were decreased in the absence of nitrogen and calcium in the medium.  相似文献   
56.
Retention of lipoproteins to proteoglycans in the subendothelial matrix (SEM) is an early event in atherosclerosis. We recently reported that collagen XVIII and its proteolytically released fragment endostatin (ES) are differentially depleted in blood vessels affected by atherosclerosis. Loss of collagen XVIII/ES in atherosclerosis-prone mice enhanced plaque neovascularization and increased the vascular permeability to lipids by distinct mechanisms. Impaired endothelial barrier function increased the influx of lipoproteins across the endothelium; however, we hypothesized that enhanced retention might be a second mechanism leading to the increased lipid content in atheromas lacking collagen XVIII. We now demonstrate a novel property of ES that binds both the matrix proteoglycan biglycan and LDL and interferes with LDL retention to biglycan and to SEM. A peptide encompassing the alpha coil in the ES crystal structure mediates the major blocking effect of ES on LDL retention. ES inhibits the macrophage uptake of biglycan-associated LDL indirectly by interfering with LDL retention to biglycan, but it has no direct effect on the macrophage uptake of native or modified lipoproteins. Thus, loss of ES in advanced atheromas enhances lipoprotein retention in SEM. Our data reveal a third protective role of this vascular basement membrane component during atherosclerosis.  相似文献   
57.
Syntrophins are scaffold proteins of the dystrophin glycoprotein complex (DGC), which target ion channels, receptors, and signaling proteins to specialized subcellular domains. A yeast two-hybrid screen of a human brain cDNA library with the PSD-95, Discs-large, ZO-1 (PDZ) domain of gamma1-syntrophin yielded overlapping clones encoding the C terminus of TAPP1, a pleckstrin homology (PH) domain-containing adapter protein that interacts specifically with phosphatidylinositol 3,4-bisphosphate (PI(3,4)P(2)). In biochemical assays, the C terminus of TAPP1 bound specifically to the PDZ domains of gamma1-, alpha1-, and beta2-syntrophin and was required for syntrophin binding and for the correct subcellular localization of TAPP1. TAPP1 is recruited to the plasma membrane of cells stimulated with platelet-derived growth factor (PDGF), a motogen that produces PI(3,4)P(2). Cell migration in response to PDGF stimulation is characterized by a rapid reorganization of the actin cytoskeleton, which gives rise to plasma membrane specializations including peripheral and dorsal circular ruffles. Both TAPP1 and syntrophins were localized to PDGF-induced circular membrane ruffles in NIH-3T3 cells. Ectopic expression of TAPP1 potently blocked PDGF-induced formation of dorsal circular ruffles, but did not affect peripheral ruffling. Interestingly, coexpression of alpha1- or gamma1-syntrophin with TAPP1 prevented the blockade of circular ruffling. In addition to syntrophins, several other proteins of the DGC were enriched in circular ruffles. Collectively, our results suggest syntrophins regulate the localization of TAPP1, which may be important for remodeling the actin cytoskeleton in response to growth factor stimulation.  相似文献   
58.
Whereas the regenerative nature of action potential conduction in axons has been known since the late 1940s, neuronal dendrites have been considered as passive cables transferring incoming synaptic activity to the soma. The relatively recent discovery that neuronal dendrites contain active conductances has revolutionized our view of information processing in neurons. In many neuronal cell types, sodium action potentials initiated at the axon initial segment can back-propagate actively into the dendrite thereby serving, for the dendrite, as an indicator of the output activity of the neuron. In addition, the dendrites themselves can initiate action-potential-like regenerative responses, so-called dendritic spikes, that are mediated either by the activation of sodium, calcium, and/or N-methyl-D-aspartate receptor channels. Here, we review the recent experimental and theoretical evidence for a role of regenerative dendritic activity in information processing within neurons and, especially, in activity-dependent synaptic plasticity.  相似文献   
59.
In Escherichia coli, a relatively low frequency of recombination exchanges (FRE) is predetermined by the activity of RecA protein, as modulated by a complex regulatory program involving both autoregulation and other factors. The RecA protein of Pseudomonas aeruginosa (RecA(Pa)) exhibits a more robust recombinase activity than its E. coli counterpart (RecA(Ec)). Low-level expression of RecA(Pa) in E. coli cells results in hyperrecombination (an increase of FRE) even in the presence of RecA(Ec). This genetic effect is supported by the biochemical finding that the RecA(Pa) protein is more efficient in filament formation than RecA K72R, a mutant protein with RecA(Ec)-like DNA-binding ability. Expression of RecA(Pa) also partially suppresses the effects of recF, recO, and recR mutations. In concordance with the latter, RecA(Pa) filaments initiate recombination equally from both the 5' and 3' ends. Besides, these filaments exhibit more resistance to disassembly from the 5' ends that makes the ends potentially appropriate for initiation of strand exchange. These comparative genetic and biochemical characteristics reveal that multiple levels are used by bacteria for a programmed regulation of their recombination activities.  相似文献   
60.
During apoptosis, cytochrome c (cyt c) is released from intermembrane space of mitochondria into the cytosol where it triggers the caspase-dependent machinery. We discovered that cyt c plays another critical role in early apoptosis as a cardiolipin (CL)-specific oxygenase to produce CL hydroperoxides required for release of pro-apoptotic factors [Kagan, V. E., et al. (2005) Nat. Chem. Biol. 1, 223-232]. We quantitatively characterized the activation of peroxidase activity of cyt c by CL and hydrogen peroxide. At low ionic strength and high CL/cyt c ratios, peroxidase activity of the CL/cyt c complex was increased >50 times. This catalytic activity correlated with partial unfolding of cyt c monitored by Trp(59) fluorescence and absorbance at 695 nm (Fe-S(Met(80)) band). The peroxidase activity increase preceded the loss of protein tertiary structure. Monounsaturated tetraoleoyl-CL (TOCL) induced peroxidase activity and unfolding of cyt c more effectively than saturated tetramyristoyl-CL (TMCL). TOCL/cyt c complex was found more resistant to dissociation by high salt concentration. These findings suggest that electrostatic CL/cyt c interactions are central to the initiation of the peroxidase activity, while hydrophobic interactions are involved when cyt c's tertiary structure is lost. In the presence of CL, cyt c peroxidase activity is activated at lower H(2)O(2) concentrations than for isolated cyt c molecules. This suggests that redistribution of CL in the mitochondrial membranes combined with increased production of H(2)O(2) can switch on the peroxidase activity of cyt c and CL oxidation in mitochondria-a required step in execution of apoptosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号