首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   7篇
  2022年   3篇
  2021年   5篇
  2019年   5篇
  2018年   4篇
  2017年   3篇
  2016年   5篇
  2015年   5篇
  2014年   4篇
  2013年   8篇
  2012年   3篇
  2011年   5篇
  2010年   5篇
  2009年   8篇
  2008年   12篇
  2007年   16篇
  2006年   9篇
  2005年   6篇
  2004年   5篇
  2003年   5篇
  2002年   8篇
  2001年   5篇
  2000年   6篇
  1999年   3篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   3篇
  1992年   3篇
  1991年   8篇
  1990年   4篇
  1989年   5篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
  1972年   2篇
  1969年   2篇
排序方式: 共有199条查询结果,搜索用时 62 毫秒
81.
Tissue plasminogen activator was partially purified from the inferior turbinate and nasal polyp, and its biochemical properties were investigated. Similar TPA peak positions were seen in the gel filtration chromatography of both tissues, and the molecular weight was approximately 65,000, which was comparable to TPA of pig heart (55,000-60,000). Activity of TPA from inferior turbinate was higher than that from nasal polyp. TPA from both tissues was completely inhibited by trans-aminomethyl cyclohexane carboxylic acid, dithiothreitol, and diisopropylfluorophosphate and had similar inhibition profiles to TPA from pig heart. All these findings indicate that TPA from both tissues is undoubtedly a plasminogen-activating enzyme and serine-type protease and would be biochemically identical.  相似文献   
82.
83.
Redox imbalance in cystine/glutamate transporter-deficient mice   总被引:1,自引:0,他引:1  
Cystine/glutamate transporter, designated as system x(-)(c), mediates cystine entry in exchange for intracellular glutamate in mammalian cells. This transporter consists of two protein components, xCT and 4F2 heavy chain, and the former is predicted to mediate the transport activity. This transporter plays a pivotal role for maintaining the intracellular GSH levels and extracellular cystine/cysteine redox balance in cultured cells. To clarify the physiological roles of this transporter in vivo, we generated and characterized mice lacking xCT. The xCT(-/-) mice were healthy in appearance and fertile. However, cystine concentration in plasma was significantly higher in these mice, compared with that in the littermate xCT(-/-) mice, while there was no significant difference in plasma cysteine concentration. Plasma GSH level in xCT(-/-) mice was lower than that in the xCT(-/-) mice. The embryonic fibroblasts derived from xCT(-/-) mice failed to survive in routine culture medium, and 2-mercaptoethanol was required for survival and growth. When 2-mercaptoethanol was removed from the culture medium, cysteine and GSH in these cells dramatically decreased, and cells started to die within 24 h. N-Acetyl cysteine also rescued xCT(-/-)-derived cells and permitted growth. These results demonstrate that system x(-)(c) contributes to maintaining the plasma redox balance in vivo but is dispensable in mammalian development, although it is vitally important to cells in vitro.  相似文献   
84.
85.
Anatomical differences between embryogenic and non-embryogenic calli ofPimpinella brachycarpa were investigated by light microscopy and electron microscopy. Initial callus tissue emerged from expiants after 14 d of culturing. The embryogenie calli (EC) were firm, rather opaque, and light yellow in color. The cells usually formed small, compact clusters. Nonembryogenic calli (NEC), however, were friable, semitransparent, and yellow or gray. These formed relatively larger and loosely held clusters. Scanning electron microscopy showed that EC were composed of individual compact and spherical cells that were rather regular in size and approximately 20 μm long. All were tightly held together and appeared to organize globular embryos. In contrast, the NEC comprised elongated and loosely held cells that were approximately 50 μm long. Tubular and u-shaped NEC cells protruded irregularly, and were of varying heights along the cell aggregates. Transmission electron microscopy of the EC revealed typical eukaryotic cytoplasmic components, including nuclei, mitochondria, and vacuoles in the cytoplasm enclosed by an electron-transparent cell wall. Based on the numerous ribosomes within the cytoplasm, these cells appeared to be well-organized and metabolically active. The NEC cells were much larger and more highly vacuolated than those of the EC. In ultrathin sections, the former seemed to be almost devoid of other cellular contents except for plastids and nuclei. Furthermore, EC and NEC showed different regeneration capacities in their somatic embryo formation. Most EC produced hyperhydric somatic embryos, followed by normal somatic embryos; whereas only a few shooted or rooted somatic embryos arose from the NEC.  相似文献   
86.
Tenascin is an extra cellular matrix glycoprotein which is distributed in the mesenchyme surrounding various organs during embryogenesis. It has also been demonstrated in some normal adult tissues and in the matrix of human tumours. The present study has been carried out to analyse the distribution of tenascin in non malignant and malignant skin disorders, in squamous cell carcinomas of the head and neck, in squamous cell carcinoma xenografts and in a squamous cell carcinoma cell line grown on collagen gel. Immunohistochemical localisation of tenascin was performed, using a monoclonal antibody specific for tenascin, by the indirect immunoperoxidase method with silver enhancement. Tenascin was heterogeneously distributed in the extra cellular matrix of squamous cell carcinomas and in squamous cell carcinoma xenografts. It was absent in basal cell carcinoma and in the squamous cell carcinoma cell line grown on collagen gel. The distribution of tenascin in squamous cell carcinoma and basal cell carcinoma is discussed in relation to tumour invasion and differentiation.  相似文献   
87.
Tenascin is a compound of the mesenchymal extracellular matrix and has been proposed as a possible mediator in epithelial-mesenchymal interactions, because of its characteristic distribution in tissues during fetal development. In the present study, we have investigated by immunofluorescence the changes in the distribution of tenascin during development of the mouse urogenital sinus, a process in which tissue interactions were found to be essential. Tenascin first appears in dorsal mesenchyme on days 13-15 of gestation, coinciding with morphological changes of the epithelium. During male development, tenascin accumulates in the dorsal mesenchyme around the junction of Wolffian ducts, but not in the ventral mesenchyme, into which prostatic buds (prostate gland anlagen) project from the sinus epithelium. During female development, the mesenchyme that participates in the downgrowth of the vagina (derived from Müllerian ducts) stains intensively for tenascin. In both of these tenascin-positive areas, the epithelium undergoes conspicuous morphogenetic changes. The results suggest that mesenchymal tenascin could be involved in the epithelial morphogenesis of the sinus, especially in the morphogenesis of the genital ducts.  相似文献   
88.
Summary Merkel cells in the lower labial mucosa of adult rabbits were studied electron microscopically, 9, 21, 28, and 50 days after resection of the mental nerves. By day 9, nerve fibers were completely retracted from the epithelial layer of the mucosa. On and after day 21, Merkel cells were located not only in the basal layer but also in the prickle or more superficial cell layers. The ultrastructure of the migrating Merkel cells was unchanged, both as to the amount and location of the specific cored granules in the cytoplasm, until the cells reached the granular cell layer. The position of the migrating Merkel cells differed from cell to cell, and migration continued for at least 50 days. A remarkably large number of immature Merkel cells was observed in the basal and suprabasal cell layers of the denervated epithelium even by day 50. Therefore, the possibility of the reproduction of Merkel cells exists. The migrating Merkel cells, as well as the keratinocytes in the same cell layer, had degenerated drastically in the parakeratinized cell layer. This seems to indicate that the Merkel cells belong to the line of keratinocytes.  相似文献   
89.
90.
Lipoproteins that play critical roles in various cellular functions of Gram-negative bacteria are localized in the cells inner and outer membranes. Lol proteins (LolA, LolB, LolC, LolD, and LolE) are involved in the transportation of outer membrane-directed lipoproteins from the inner to the outer membrane. LolA is a periplasmic chaperone that transports lipoproteins, and LolB is an outer membrane receptor that accepts lipoproteins. To clarify the structural basis for the lipoprotein transfer from LolA to LolB, we examined the interaction between LolA and mLolB, a soluble mutant of LolB, using solution NMR spectroscopy. We determined the interaction mode between LolA and mLolB with conformational changes of LolA. Based upon the observations, we propose that the LolA·LolB complex forms a tunnel-like structure, where the hydrophobic insides of LolA and LolB are connected, which enables lipoproteins to transfer from LolA to LolB.Gram-negative bacteria express lipid-modified proteins, lipoproteins, which are anchored to the cellular membrane via acyl chains attached to N-terminal cysteine residues of the lipoproteins. Putative lipoproteins have been found in various bacteria. For example, Escherichia coli has at least 90 types of lipoproteins (1), and the Lyme disease spirochete Borrelia burgdorferi has 105 putative lipoproteins (2). Although little is known about the functions of the majority of lipoproteins, some of the lipoproteins play essential roles in various cellular functions of Gram-negative bacteria, such as cell surface structure stabilization, cell shape maintenance, substrate transport, cell growth, and cell signaling (3).Lipoproteins are located at three cellular membrane sites; they are the periplasmic side of the inner membrane, the periplasmic side of the outer membrane, and the outside of the outer membrane (4). In E. coli most of the lipoproteins are anchored to the periplasmic side of the outer membrane, whereas others are anchored to that of the inner membrane (1). Therefore, the transportation of the lipoproteins to the outer membrane is essential for E. coli.Five Lol proteins, LolA, LolB, LolC, LolD, and LolE, play central roles in the outer membrane-directed lipoprotein localization. The Lol·CDE complex, which is anchored to the inner membrane, transfers the lipoproteins from the membrane to a soluble monomer periplasmic protein, LolA (182 amino acids) in an ATP-dependent manner (57). LolA transports the lipoproteins from the inner membrane through the periplasmic space to the outer membrane and transfers them to an outer membrane lipoprotein, LolB (186 amino acids). LolB is anchored to the membrane by acyl chains attached to its N-terminal cysteine, and it finally inserts the lipoproteins into the outer membrane (810).Among the Lol proteins the crystal structures of LolA and LolB have been solved. As for LolB, the soluble mutant of LolB, mLolB, in which the N-terminal cysteine residue was replaced with an alanine residue, was used for the structural analysis. Although LolA and mLolB share only 8% primary sequence identity, their tertiary structures are similar to each other (11). The structures of both LolA and mLolB resemble an open β-barrel with a lid. The convex side of the β-barrel is fully solvent-exposed, whereas the concave side is partly exposed (supplemental Fig. S1).The open β-barrels of LolA and LolB comprise 11 antiparallel β-strands (β1–β11) and an extra β-strand, β12 for LolA and β11′ for LolB. The lid is composed of three α-helices (α1–α3) and is embedded in the concave side of the β-barrel. The concave sides of LolA and LolB contain many hydrophobic residues. Therefore, this concave side of the proteins is speculated to be the binding site for the hydrophobic acyl chains of lipoproteins. Interestingly, one of the crystal structures of LolB accommodated a molecule of polyethylene glycol 2000 monomethyl ether, PEGMME2000, on the hydrophobic surface of the concave side (supplemental Fig. S1).The specific interaction between LolA and LolB is a decisive step in correctly sorting lipoproteins from LolA via LolB to the outer membrane. However, the structural aspects of the interaction, which would clarify how LolA transfers lipoproteins to LolB, remain unknown. To address this issue, we focused on the interaction between LolA and LolB.Here we investigated the interaction of LolA with LolB by NMR spectroscopy. We used LolA with a His6 tag and mLolB, which retain the biological activities similar to those of the wild type protein (8, 12). By exploiting the cross-saturation and paramagnetic relaxation enhancement (PRE)2 techniques, we successfully determined the interfacial residues of LolA and mLolB and the relative orientation of the two molecules in the complex. In addition, we identified the binding sites of an acyl chain analogue, decanoate, on LolA and mLolB. The results obtained from the present study not only explain how LolA might achieve lipoprotein transfer to LolB but also may provide new insights into the structural and functional aspects of other fatty acid-binding proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号