首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   712篇
  免费   38篇
  2023年   1篇
  2022年   7篇
  2021年   12篇
  2020年   7篇
  2019年   14篇
  2018年   7篇
  2017年   9篇
  2016年   17篇
  2015年   30篇
  2014年   25篇
  2013年   56篇
  2012年   45篇
  2011年   48篇
  2010年   37篇
  2009年   42篇
  2008年   33篇
  2007年   40篇
  2006年   43篇
  2005年   36篇
  2004年   35篇
  2003年   36篇
  2002年   28篇
  2001年   17篇
  2000年   9篇
  1999年   12篇
  1998年   7篇
  1997年   6篇
  1996年   2篇
  1995年   8篇
  1994年   2篇
  1993年   3篇
  1992年   8篇
  1991年   5篇
  1990年   7篇
  1989年   8篇
  1988年   7篇
  1987年   7篇
  1986年   5篇
  1985年   5篇
  1984年   7篇
  1983年   5篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1977年   4篇
  1976年   1篇
  1975年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有750条查询结果,搜索用时 151 毫秒
231.
232.
Human NUDT5 (hNUDT5) hydrolyzes various modified nucleoside diphosphates including 8-oxo-dGDP, 8-oxo-dADP and ADP-ribose (ADPR). However, the structural basis of the broad substrate specificity remains unknown. Here, we report the crystal structures of hNUDT5 complexed with 8-oxo-dGDP and 8-oxo-dADP. These structures reveal an unusually different substrate-binding mode. In particular, the positions of two phosphates (α and β phosphates) of substrate in the 8-oxo-dGDP and 8-oxo-dADP complexes are completely inverted compared with those in the previously reported hNUDT5–ADPR complex structure. This result suggests that the nucleophilic substitution sites of the substrates involved in hydrolysis reactions differ despite the similarities in the chemical structures of the substrates and products. To clarify this hypothesis, we employed the isotope-labeling method and revealed that 8-oxo-dGDP is attacked by nucleophilic water at Pβ, whereas ADPR is attacked at Pα. This observation reveals that the broad substrate specificity of hNUDT5 is achieved by a diversity of not only substrate recognition, but also hydrolysis mechanisms and leads to a novel aspect that enzymes do not always catalyze the reaction of substrates with similar chemical structures by using the chemically equivalent reaction site.  相似文献   
233.
One‐third of the world's humans has latent tuberculosis infection (LTBI), representing a large pool of potentially active TB. Recent LTBI carries a higher risk of disease progression than remote LTBI. Recent studies suggest important roles of antibodies in TB pathology, prompting us to investigate serum antibody profiles in a cohort with LTBI. In this single‐center prospective observational study, we analyzed IgG‐antibody concentrations against five major Mycobacterium tuberculosis (Mtb) antigens (including 6 kDa early secretory antigenic target (ESAT6), CFP10, and antigen 85A, which are expressed mainly in the growth phase; and mycobacterial DNA‐binding protein 1 (MDP1) and alpha‐crystallin like protein (Acr), which are expressed in the dormant phases) in individuals with recent (n=13) or remote (n=12) LTBI, no Mtb infection (n=19), or active TB (n=15). Antibody titers against ESAT6 and MDP1 were significantly higher in individuals with recent LTBI than in those with no Mtb infection or remote LTBI. All pairwise antibody titers against these five major antigens were significantly correlated throughout the stages of Mtb infection. Five individuals with recent LTBI had significantly higher antibody titers against ESAT6 (P = 0.03), Ag85A (P = 0.048), Acr (P = 0.057), and MDP1 (P = 0.0001) than in individuals with remote LTBI; they were also outside the normal range (+2 SDs). One of these individuals was diagnosed with active pulmonary TB at 18‐month follow‐up examination. These findings indicated that concentrations of antibodies against both multiplying and dormant Mtb are higher in recent LTBI and that individuals with markedly higher antibody titers may be appropriate candidates for prophylactic therapy.  相似文献   
234.
The maintenance of mixed mating was studied in Shorea curtisii, a dominant and widely distributed dipterocarp species in Southeast Asia. Paternity and hierarchical Bayesian analyses were used to estimate the parameters of pollen dispersal kernel, male fecundity and self-pollen affinity. We hypothesized that partial self incompatibility and/or inbreeding depression reduce the number of selfed seeds if the mother trees receive sufficient pollen, whereas reproductive assurance increases the numbers of selfed seeds under low amounts of pollen. Comparison of estimated parameters of self-pollen affinity between high density undisturbed and low density selectively logged forests indicated that self-pollen was selectively excluded from mating in the former, probably due to partial self incompatibility or inbreeding depression until seed maturation. By estimating the self-pollen affinity of each mother tree in both forests, mother trees with higher amount of self-pollen indicated significance of self-pollen affinity with negative estimated value. The exclusion of self-fertilization and/or inbreeding depression during seed maturation occurred in the mother trees with large female fecundity, whereas reproductive assurance increased self-fertilization in the mother trees with lower female fecundity.  相似文献   
235.
236.
237.
Synaptobrevin, also called vesicle-associated membrane protein (VAMP), is a component of the plasma membrane N-methylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, which plays a key role in intracellular membrane fusion. Previous studies have revealed that, similar to synaptobrevin in other organisms, the fission yeast synaptobrevin ortholog Syb1 associates with post-Golgi secretory vesicles and is essential for cytokinesis and cell elongation. Here, we report that Syb1 has a role in sporulation. After nitrogen starvation, green fluorescent protein (GFP)-Syb1 is found in intracellular dots. As meiosis proceeds, GFP-Syb1 accumulates around the nucleus and then localizes at the forespore membrane (FSM). We isolated a syb-S1 mutant, which exhibits a defect in sporulation. In syb1-S1 mutants, the FSM begins to form but fails to develop a normal morphology. Electron microscopy shows that an abnormal spore wall is often formed in syb1-S1 mutant spores. Although most syb1-S1 mutant spores are germinated, they are less tolerant to ethanol than wild-type spores. The syb1-S1 allele carries a missense mutation, resulting in replacement of a conserved cysteine residue adjacent to the transmembrane domain, which reduces the stability and abundance of the Syb1 protein. Taken together, these results indicate that Syb1 plays an important role in both FSM assembly and spore wall formation.  相似文献   
238.
The various monosaccharide composition analysis methods were evaluated as monosaccharide test for glycoprotein-based pharmaceuticals. Neutral and amino sugars were released by hydrolysis with 4–7 N trifluoroacetic acid. The monosaccharides were N-acetylated if necessary, and analyzed by high-performance liquid chromatography (HPLC) with fluorometric or UV detection after derivatization with 2-aminopyridine, ethyl 4-aminobenzoate, 2-aminobenzoic acid or 1-phenyl-3-methyl-5-pyrazolone, or high pH anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Sialic acids were released by mild acid hydrolysis or sialidase digestion, and analyzed by HPLC with fluorometric detection after derivatization with 1,2-diamino-4,5-methylenedioxybenzene, or HPAEC-PAD. These methods were verified for resolution, linearity, repeatability, and accuracy using a monosaccharide standard solution, a mixture of epoetin alfa and beta, and alteplase as models. It was confirmed that those methods were useful for ensuring the consistency of glycosylation. It is considered essential that the analytical conditions including desalting, selection of internal standards, release of monosaccharides, and gradient time course should be determined carefully to eliminate interference of sample matrix.Various HPLC-based monosaccharide analysis methods were evaluated as a carbohydrate test for glycoprotein pharmaceuticals by an inter-laboratory study.  相似文献   
239.
The motile cells of chytrids were once believed to be relics from the time before the colonization of land by fungi. However, the majority of chytrids had not been found in marine but freshwater environments. We investigated fungal diversity by a fungal-specific PCR-based analysis of environmental DNA in deep-sea methane cold-seep sediments, identifying a total of 35 phylotypes, 12 of which were early diverging fungi (basal fungi, ex 'lower fungi'). The basal fungi occupied a major portion of fungal clones. These were phylogenetically placed into a deep-branching clade of fungi and the LKM11 clade that was a divergent group comprised of only environmental clones from aquatic environments. As suggested by Lara and colleagues, species of the endoparasitic genus Rozella, being recently considered of the earliest branching taxa of fungi, were nested within the LKM11 clade. In the remaining 23 phylotypes identified as the Dikarya, the majority of which were similar to those which appeared in previously deep-sea studies, but also highly novel lineages associated with Soil Clone Group I (SCGI), Entorrhiza sp. and the agaricomycetous fungi were recorded. The fungi of the Dikarya may play a role in the biodegradation of lignin and lignin-derived materials in deep-sea, because the characterized fungal species related to the frequent phylotypes within the Dikarya have been reported to possess an ability to degrade lignin.  相似文献   
240.
In Arabidopsis, DEMETER (DME) DNA demethylase contributes to reprogramming of the epigenetic state of the genome in the central cell. However, other aspects of the active DNA demethylation processes remain elusive. Here we show that Arabidopsis SSRP1, known as an HMG domain-containing component of FACT histone chaperone, is required for DNA demethylation and for activation and repression of many parentally imprinted genes in the central cell. Although loss of DNA methylation releases silencing of the imprinted FWA-GFP, double ssrp1-3;met1-3 mutants surprisingly showed limited activation of maternal FWA-GFP in the central cell, and only became fully active after several nuclear divisions in the endosperm. This behavior was in contrast to the dme-1;met1 double mutant in which hypomethylation of FWA-GFP by met1 suppressed the DNA demethylation defect of dme-1. We propose that active DNA demethylation by DME requires SSRP1 function through a distinctly different process from direct DNA methylation control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号