首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   466篇
  免费   28篇
  2023年   1篇
  2022年   5篇
  2021年   8篇
  2020年   5篇
  2019年   12篇
  2018年   7篇
  2017年   5篇
  2016年   12篇
  2015年   16篇
  2014年   15篇
  2013年   39篇
  2012年   32篇
  2011年   40篇
  2010年   30篇
  2009年   33篇
  2008年   27篇
  2007年   28篇
  2006年   29篇
  2005年   29篇
  2004年   19篇
  2003年   23篇
  2002年   23篇
  2001年   4篇
  2000年   3篇
  1999年   6篇
  1998年   4篇
  1997年   4篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有494条查询结果,搜索用时 31 毫秒
11.
The major lipid constituent of symbiotic gram-positive bacteria in animals are phosphatidylglycerol, cardiolipin and dihexaosyl diglycerides (DH-DG), whose hydrophobic structures are characteristic of the environments, and the carbohydrate structures of DH-DGs are bacterial species-characteristic. Immunization of rabbits with intestinal lactobacilli generated antibodies against DH-DGs and their modified structures, among which Galα1-6-substituted DH-DG, i.e., Lactobacillus tetrahexaosyl diglyceride (LacTetH-DG), reacted with antibodies more intensely than DH-DG. Whereas, from the 16S-rRNA sequence, the intestinal lactobacilli in murine digestive tracts were revealed to be L. johnsonii, in which LacTetH-DG is present at the concentration of 2.2 ng per 1?×?106 cells. To obtain more accurate estimates of intestinal lactobacilli in several regions of the digestive tract of mice, LacTetH-DG was detected by TLC-immunostaining with anti-Lactobacillus antisera, being found in the stomach, cecum and colon of normal breeding mice, 1.0?×?109, 3.5?×?109 and 7.4?×?109 cells, respectively. Administration of penicillin and streptomycin for 6 days resulted in a reduction in the number of intestinal lactobacilli, the levels being 0 %, 30 % and 4 % of the control ones in the stomach, cecum and colon, respectively, which was associated with the accumulation of the contents in the tracts from the stomach to the cecum and with diarrhea. In addition, a reduced amount of fucosyl GA1 (FGA1) and a compensatory increase in GA1 due to the reduced activity of α1,2-fucosyltransferase in the small intestine and the enhanced discharge of FGA1 into the contents occurred in mice, probably due to the altered population of bacteria caused by administration of penicillin and streptomycin.  相似文献   
12.
Hoolock gibbons (genus Hoolock) are a group of very endangered primate species that belong to the small ape family (family Hylobatidae). The entire population that is distributed in the northeast and southeast of Bangladesh is estimated to include only around 350 individuals. A conservation program is thus necessary as soon as possible. Genetic markers are significant tools for planning such programs. In this study, we examined chromosomal characteristics of two western hoolock gibbons that were captured in a Bangladesh forest. During chromosome analysis, we encountered two chromosome variations that were observed for the first time in the wild-born western hoolock gibbons (Hoolock hoolock). The first one was a nonhomologous centromere position in chromosome 8 that was observed in the two examined individuals. The alteration was identical in the two individuals, which were examined by G-band and DAPI-band analyses. Chromosome paint analyses revealed that the difference in the centromere position was due to a single small pericentric inversion. The second variation was a heterozygous elongation in chromosome 9. Analysis by sequential techniques of fluorescence in situ hybridization with 18S rDNA and silver nitrate staining revealed a single and an inverted tandem duplication, respectively, of the nucleolus organizer region in two individuals. These chromosome variations provide useful information for the next steps to consider the evolution and conservation of the hoolock gibbon.  相似文献   
13.
To date, parathyroid hormone is the only clinically available bone anabolic drug. The major difficulty in the development of such drugs is the lack of clarification of the mechanisms regulating osteoblast differentiation and bone formation. Here, we report a peptide (W9) known to abrogate osteoclast differentiation in vivo via blocking receptor activator of nuclear factor-κB ligand (RANKL)-RANK signaling that we surprisingly found exhibits a bone anabolic effect in vivo. Subcutaneous administration of W9 three times/day for 5 days significantly augmented bone mineral density in mouse cortical bone. Histomorphometric analysis showed a decrease in osteoclastogenesis in the distal femoral metaphysis and a significant increase in bone formation in the femoral diaphysis. Our findings suggest that W9 exerts bone anabolic activity. To clarify the mechanisms involved in this activity, we investigated the effects of W9 on osteoblast differentiation/mineralization in MC3T3-E1 (E1) cells. W9 markedly increased alkaline phosphatase (a marker enzyme of osteoblasts) activity and mineralization as shown by alizarin red staining. Gene expression of several osteogenesis-related factors was increased in W9-treated E1 cells. Addition of W9 activated p38 MAPK and Smad1/5/8 in E1 cells, and W9 showed osteogenesis stimulatory activity synergistically with BMP-2 in vitro and ectopic bone formation. Knockdown of RANKL expression in E1 cells reduced the effect of W9. Furthermore, W9 showed a weak effect on RANKL-deficient osteoblasts in alkaline phosphatase assay. Taken together, our findings suggest that this peptide may be useful for the treatment of bone diseases, and W9 achieves its bone anabolic activity through RANKL on osteoblasts accompanied by production of several autocrine factors.  相似文献   
14.

Background

A previous study has demonstrated that endurance training under hypoxia results in a greater reduction in body fat mass compared to exercise under normoxia. However, the cellular and molecular mechanisms that underlie this hypoxia-mediated reduction in fat mass remain uncertain. Here, we examine the effects of modest hypoxia on adipocyte function.

Methods

Differentiated 3T3-L1 adipocytes were incubated at 5% O2 for 1 week (long-term hypoxia, HL) or one day (short-term hypoxia, HS) and compared with a normoxia control (NC).

Results

HL, but not HS, resulted in a significant reduction in lipid droplet size and triglyceride content (by 50%) compared to NC (p < 0.01). As estimated by glycerol release, isoproterenol-induced lipolysis was significantly lowered by hypoxia, whereas the release of free fatty acids under the basal condition was prominently enhanced with HL compared to NC or HS (p < 0.01). Lipolysis-associated proteins, such as perilipin 1 and hormone-sensitive lipase, were unchanged, whereas adipose triglyceride lipase and its activator protein CGI-58 were decreased with HL in comparison to NC. Interestingly, such lipogenic proteins as fatty acid synthase, lipin-1, and peroxisome proliferator-activated receptor gamma were decreased. Furthermore, the uptake of glucose, the major precursor of 3-glycerol phosphate for triglyceride synthesis, was significantly reduced in HL compared to NC or HS (p < 0.01).

Conclusion

We conclude that hypoxia has a direct impact on reducing the triglyceride content and lipid droplet size via decreased glucose uptake and lipogenic protein expression and increased basal lipolysis. Such an hypoxia-induced decrease in lipogenesis may be an attractive therapeutic target against lipid-associated metabolic diseases.  相似文献   
15.
16.
Human CD46 is a receptor for the M protein of group A streptococcus (GAS). The emm1 GAS strain GAS472 was isolated from a patient suffering from streptococcal toxic shock‐like syndrome. Human CD46‐expressing transgenic (Tg) mice developed necrotizing fasciitis associated with osteoclast‐mediated progressive and severe bone destruction in the hind paws 3 days after subcutaneous infection with 5 × 105 colony‐forming units of GAS472. GAS472 infection induced expression of the receptor activator of nuclear factor‐κB ligand (RANKL) while concomitantly reducing osteoprotegerin expression in the hind limb bones of CD46 Tg mice. Micro‐computed tomography analysis of the bones suggested that GAS472 infection induced local bone erosion and systemic bone loss in CD46 Tg mice. Because treatment with monoclonal antibodies (mAbs) against mouse CD4+ and CD8+ T lymphocytes did not inhibit osteoclastogenesis, T lymphocyte‐derived RANKL was not considered a major contributor to massive bone loss during GAS472 infection. However, immunohistochemical analysis of the hind limb bones showed that GAS472 infection stimulated RANKL production in various bone marrow cells, including fibroblast‐like cells. Treatment with a mAb against mouse RANKL significantly inhibited osteoclast formation and bone resorption. These data suggest that increased expression of RANKL in heterogeneous bone marrow cells provoked bone destruction during GAS infection.  相似文献   
17.
Eight chloroplast markers were developed from Japanese and snow camellia (Camellia japonica and C. rusticana). Six markers were based on mononucleotide repeats, while the other two resulted from indels of larger units. Polymorphisms were screened using 15 individuals from all over the Japanese archipelago, including C. japonica, C. japonica var. macrocarpa, C. japonica var. hozanensis, and C. rusticana. Polymorphisms within a single population were searched in 22 and 26 individuals of C. japonica and C. rusticana, respectively. The number of alleles per locus ranged from two to three, resulting in eight haplotypes, two of which were specific to C. rusticana. No polymorphisms were detected within a single population for both C. japonica and C. rusticana. The eight markers developed in the present study will be useful for analyzing the genetic diversity and tracing maternal origins of Japanese and snow camellias.  相似文献   
18.
We previously reported that liposomes having differential lipid components displayed differential adjuvant effects when antigen was coupled with liposomes via glutaraldehyde. In the present study, antigen-liposome conjugates prepared using liposomes having differential lipid components were added to the macrophage culture, and phagocytosis and the antigen digest of liposome-coupled antigen by macrophages were then investigated. Antigen presentation by macrophages to an antigen-specific T-cell clone was further investigated using the same conjugates. Antigen-liposome conjugates which induced higher levels of antibody production in vivo were recognized more often, and the liposome-coupled antigen was digested to a greater degree by macrophages than antigen-liposome conjugates which induced lower levels of antibody production. These results correlated closely with those regarding antigen presentation by macrophages; when antigen was coupled to liposomes showing higher adjuvant effect, macrophages cocultured with antigen-liposome conjugates activated antigen-specific T-cells at a higher degree. The concentration of OVA in the macrophage culture added as antigen-liposome conjugates was approximately 32 microg/mL. However, the extent of T-cell activation was almost equal to that when 800 microg/mL of soluble OVA was added to the culture. The results of the present study demonstrated that the adjuvant activity of liposomes observed primary in vivo correlated closely with the recognition of antigen-liposome conjugates and antigen presentation of liposome-coupled antigen by macrophages, suggesting that the adjuvant effects of liposomes are exerted at the beginning of the immune response, i.e., recognition of antigen by antigen-presenting cells.  相似文献   
19.
The replication of positive-strand RNA viruses involves not only viral proteins but also multiple cellular proteins and intracellular membranes. In both plant cells and the yeast Saccharomyces cerevisiae, brome mosaic virus (BMV), a member of the alphavirus-like superfamily, replicates its RNA in endoplasmic reticulum (ER)-associated complexes containing viral 1a and 2a proteins. Prior to negative-strand RNA synthesis, 1a localizes to ER membranes and recruits both positive-strand BMV RNA templates and the polymerase-like 2a protein to ER membranes. Here, we show that BMV RNA replication in S. cerevisiae is markedly inhibited by a mutation in the host YDJ1 gene, which encodes a chaperone Ydj1p related to Escherichia coli DnaJ. In the ydj1 mutant, negative-strand RNA accumulation was inhibited even though 1a protein associated with membranes and the positive-strand RNA3 replication template and 2a protein were recruited to membranes as in wild-type cells. In addition, we found that in ydj1 mutant cells but not wild-type cells, a fraction of 2a protein accumulated in a membrane-free but insoluble, rapidly sedimenting form. These and other results show that Ydj1p is involved in forming BMV replication complexes active in negative-strand RNA synthesis and suggest that a chaperone system involving Ydj1p participates in 2a protein folding or assembly into the active replication complex.  相似文献   
20.
Human saliva, which contains nitrite, is normally mixed with gastric juice, which contains ascorbic acid (AA). When saliva was mixed with an acidic buffer in the presence of 0.1 mM AA, rapid nitric oxide formation and oxygen uptake were observed. The oxygen uptake was due to the oxidation of nitric oxide, which was formed by AA-dependent reduction of nitrite under acidic conditions, by molecular oxygen. A salivary component SCN enhanced the nitric oxide formation and oxygen uptake by the AA/nitrite system. The oxygen uptake by the AA/nitrite/SCN system was also observed in an acidic buffer solution. These results suggest that oxygen is normally taken up in the stomach when saliva and gastric juice are mixed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号