首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2059篇
  免费   156篇
  2024年   3篇
  2023年   7篇
  2022年   20篇
  2021年   36篇
  2020年   26篇
  2019年   38篇
  2018年   40篇
  2017年   44篇
  2016年   68篇
  2015年   96篇
  2014年   95篇
  2013年   151篇
  2012年   161篇
  2011年   164篇
  2010年   95篇
  2009年   86篇
  2008年   123篇
  2007年   134篇
  2006年   128篇
  2005年   117篇
  2004年   106篇
  2003年   112篇
  2002年   102篇
  2001年   28篇
  2000年   20篇
  1999年   21篇
  1998年   19篇
  1997年   14篇
  1996年   17篇
  1995年   12篇
  1994年   12篇
  1993年   15篇
  1992年   14篇
  1991年   13篇
  1990年   4篇
  1989年   11篇
  1987年   6篇
  1986年   4篇
  1985年   3篇
  1984年   5篇
  1983年   5篇
  1981年   8篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1976年   6篇
  1975年   2篇
  1973年   2篇
  1971年   3篇
  1970年   2篇
排序方式: 共有2215条查询结果,搜索用时 31 毫秒
51.
Recombinase-mediated cassette exchange, or RMCE, is a clean approach of gene delivery into a desired chromosomal location, as it is able to insert only the required sequences, leaving behind the unwanted ones. RMCE can be mediated by a single site-specific DNA recombinase or by two recombinases with different target specificities (dual RMCE). Recently, using the Flp–Cre recombinase pair, dual RMCE proved to be efficient, provided the relative ratio of the enzymes during the reaction is optimal. In the present report, we analyzed how the efficiency of dual RMCE mediated by the Flp–Int (HK022) pair depends on the variable input of the recombinases—the amount of the recombinase expression vectors added at transfection—and on the order of the addition of these vectors: sequential or simultaneous. We found that both in the sequential and the simultaneous modes, the efficiency of dual RMCE was critically dependent on the absolute and the relative concentrations of the Flp and Int expression vectors. Under optimal conditions, the efficiency of ‘simultaneous’ dual RMCE reached ∼12% of the transfected cells. Our results underline the importance of fine-tuning the reaction conditions for achieving the highest levels of dual RMCE.  相似文献   
52.
A common belief is that evolution generally proceeds towards greater complexity at both the organismal and the genomic level, numerous examples of reductive evolution of parasites and symbionts notwithstanding. However, recent evolutionary reconstructions challenge this notion. Two notable examples are the reconstruction of the complex archaeal ancestor and the intron‐rich ancestor of eukaryotes. In both cases, evolution in most of the lineages was apparently dominated by extensive loss of genes and introns, respectively. These and many other cases of reductive evolution are consistent with a general model composed of two distinct evolutionary phases: the short, explosive, innovation phase that leads to an abrupt increase in genome complexity, followed by a much longer reductive phase, which encompasses either a neutral ratchet of genetic material loss or adaptive genome streamlining. Quantitatively, the evolution of genomes appears to be dominated by reduction and simplification, punctuated by episodes of complexification.  相似文献   
53.
54.
Abstract

Conformation of 20-residue peptide E5, an analog of the fusion peptide of influenza virus hemagglutinin, was explored by Monte-Carlo technique starting with the fully buried in the membrane ideal α-helix. The lipid bilayer (of 30 Å width) together with surrounding water were modeled by the atomic solvation parameters. During the simulation, residues 2–18 of the peptide retained α-helical conformation, and the peptide was found to be partially immersed into the bilayer. In the resulting low-energy conformers, the N-terminus was buried inside the membrane, its position with respect to the bilayer surface (ZNT) being varied from 2.5 to 7.5 Å, and the orientation of the helical axis relative to the membrane plane (Θ) – from 10 to 35°. The low-energy conformers (below -200kcal/mol) were clustered in the space (ZNT, Θ) into 4 groups. To select low-energy states of the peptide compatible with NMR data, we calculated pKa values of E5 ionizable groups and compared them with the experimental values. It was shown that the best correlation coefficient (0.87) and rmsd (0.68 in pH units) were obtained for the group of states which is characterized by Θ = 15–19° and ZNT = 3.5–4.5Å.  相似文献   
55.
Abstract

A procedure for imaging long DNA and double stranded RNA (dsRNA) molecules using Atomic Force Microscopy (AFM) is described. Stable binding of double stranded DNA molecules to the flat mica surface is achieved by chemical modification of freshly cleaved mica under mild conditions with 3-aminopropyltriethoxy silane. We have obtained striking images of intact lambda DNA, Hind III restriction fragments of lambda DNA and dsRNA from reovirus. These images are stable under repeated scanning and measured contour lengths are accurate to within a few percent. This procedure leads to strong DNA attachment, allowing imaging under water. The widths of the DNA images lie in the range of 20 to 80nm for data obtained in air with commercially available probes. The work demonstrates that AFM is now a routine tool for simple measurements such as a length distribution. Improvement of substrate and sample preparation methods are needed to achieve yet higher resolution.  相似文献   
56.
The V3 loop on gp120 from human immunodeficiency virus type 1 (HIV-1) is a focus of many research groups involved in anti-AIDS drug development because this region of the protein is a principal target for neutralizing antibodies and a major determinant for cell tropism and syncytium formation. In this study, the nucleotide sequences of the env gene region coding the V3 loop were determined by DNA sequencing methods for four novel HIV-1 strains that circulate in the countries of Eastern Europe, such as Russia, Belarus, Ukraine, etc. Based on the empirical data obtained, the 3D structures of the V3 loops associated with these viral modifications were generated by computer modeling and then compared to discover similarities in the spatial arrangement of this functionally important site of gp120. Despite the HIV-1 genetic variety, several regions of the V3 loop that contain residues critical for cell tropism were shown to be structurally invariant, which may explain its exceptional role in a co-receptor usage. These data together with those on the biological activity of the V3 individual residues clearly show that these conserved structural motifs of gp120 represent potential HIV-1 weak points most suitable for therapeutic intervention.  相似文献   
57.
This study examined the influence of bacteria on the virulence and pathogenicity of candidal biofilms. Mature biofilms (Candida albicans-only, bacteria-only, C. albicans with bacteria) were generated on acrylic and either analysed directly, or used to infect a reconstituted human oral epithelium (RHOE). Analyses included Candida hyphae enumeration and assessment of Candida virulence gene expression. Lactate dehydrogenase (LDH) activity and Candida tissue invasion following biofilm infection of the RHOE were also measured. Candida hyphae were more prevalent (p < 0.05) in acrylic biofilms also containing bacteria, with genes encoding secreted aspartyl-proteinases (SAP4/SAP6) and hyphal-wall protein (HWP1) up-regulated (p < 0.05). Candida adhesin genes (ALS3/EPA1), SAP6 and HWP1 were up-regulated in mixed-species biofilm infections of RHOE. Multi-species infections exhibited higher hyphal proportions (p < 0.05), up-regulation of IL-18, higher LDH activity and tissue invasion. As the presence of bacteria in acrylic biofilms promoted Candida virulence, consideration should be given to the bacterial component when managing denture biofilm associated candidoses.  相似文献   
58.
Effective vaccination programs have dramatically reduced the number of measles-related deaths globally. Although all the available data suggest that measles eradication is biologically feasible, a structural and biochemical basis for the single serotype nature of measles virus (MV) remains to be provided. The hemagglutinin (H) protein, which binds to two discrete proteinaceous receptors, is the major neutralizing target. Monoclonal antibodies (MAbs) recognizing distinct epitopes on the H protein were characterized using recombinant MVs encoding the H gene from different MV genotypes. The effects of various mutations on neutralization by MAbs and virus fitness were also analyzed, identifying the location of five epitopes on the H protein structure. Our data in the present study demonstrated that the H protein of MV possesses at least two conserved effective neutralizing epitopes. One, which is a previously recognized epitope, is located near the receptor-binding site (RBS), and thus MAbs that recognize this epitope blocked the receptor binding of the H protein, whereas the other epitope is located at the position distant from the RBS. Thus, a MAb that recognizes this epitope did not inhibit the receptor binding of the H protein, rather interfered with the hemagglutinin-fusion (H-F) interaction. This epitope was suggested to play a key role for formation of a higher order of an H-F protein oligomeric structure. Our data also identified one nonconserved effective neutralizing epitope. The epitope has been masked by an N-linked sugar modification in some genotype MV strains. These data would contribute to our understanding of the antigenicity of MV and support the global elimination program of measles.  相似文献   
59.
Many variants of the DR3/LARD death receptor mRNA are derived during alternative splicing. Different DR3/LARD mRNAs encode the membrane and soluble forms of the receptor, which perform different functions. The frequency of the spliced mRNA variants of DR3/LARD was assessed by RT-PCR in patients with colorectal cancer and in cancer cell lines. Four forms of the DR3/LARD death receptor mRNA were detected with different frequencies in the studied samples. Two of them encoded the membrane molecules (LARD 1a mRNA and DR3β mRNA) and two other forms expressed the soluble forms of the receptor (LARD 3 mRNA and soluble DR3β mRNA). In the blood of healthy volunteers, 11 variants (spectra) of DR3/LARD mRNA forms were identified, and the full spectrum that included all four variants of DR3/LARD mRNA dominated. In blood and tumor center samples from patients with colon cancer, six spectra of DR3/LARD mRNA were found. The diversity of the DR3/LARD mRNA spectra was decreased in colon cancer patients due to the reduced frequency of soluble DR3β mRNA. In samples of tumor centers, the spectrum with the absence of only mRNA of the soluble DR3β form dominated. In the blood of patients, two spectra prevailed, i.e., the full spectrum and LARD 1a mRNA and LARD 3 mRNA. Only these two spectra of DR3/LARD mRNA were also found in cancer cell lines. Distinctions in the frequency of DR3/LARD mRNA spectra in healthy volunteers and patients with colorectal cancer can define the different susceptibility of immunocompetent and tumor cells to apoptosis signals.  相似文献   
60.
Dissimilatory metal reducing bacteria (DMRB) catalyze the reduction of Fe(III) to Fe(II) in anoxic soils, sediments, and groundwater. Two-line ferrihydrite is a bioavailable Fe(III) oxide form that is exploited by DMRB as a terminal electron acceptor. A wide variety of biomineralization products result from the interaction of DMRB with 2-line ferrihydrite. Here we describe the state of knowledge on the biotransformation of synthetic 2-line ferrihydrite by laboratory cultures of DMRB using select published data and new experimental results. A facultative DMRB is emphasized ( Shewanella putrefaciens ) upon which most of this work has been performed. Key factors controlling the identity of the secondary mineral suite are evaluated including medium composition, electron donor and acceptor concentrations, ferrihydrite aging/recrystallization status, sorbed ions, and co-associated crystalline Fe(III) oxides. It is shown that crystalline ferric (goethite, hematite, lepidocrocite), ferrous (siderite, vivianite), and mixed valence (magnetite, green rust) iron solids are formed in anoxic, circumneutral DMRB incubations. Some products are well rationalized based on thermodynamic considerations, but others appear to result from kinetic pathways driven by ions that inhibit interfacial electron transfer or the precipitation of select phases. The primary factor controlling the nature of the secondary mineral suite appears to be the Fe(II) supply rate and magnitude, and its surface reaction with the residual oxide and other sorbed ions. The common observation of end-product mineral mixtures that are not at global equilibrium indicates that microenvironments surrounding respiring DMRB cells or the reaction-path trajectory (over Eh-pH space) may influence the identity of the final biomineralization suite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号