首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2667篇
  免费   207篇
  2023年   9篇
  2022年   28篇
  2021年   43篇
  2020年   29篇
  2019年   38篇
  2018年   44篇
  2017年   42篇
  2016年   76篇
  2015年   110篇
  2014年   108篇
  2013年   189篇
  2012年   182篇
  2011年   205篇
  2010年   110篇
  2009年   104篇
  2008年   148篇
  2007年   160篇
  2006年   155篇
  2005年   143篇
  2004年   138篇
  2003年   146篇
  2002年   132篇
  2001年   39篇
  2000年   53篇
  1999年   53篇
  1998年   27篇
  1997年   21篇
  1996年   26篇
  1995年   15篇
  1994年   16篇
  1993年   22篇
  1992年   34篇
  1991年   32篇
  1990年   23篇
  1989年   22篇
  1988年   15篇
  1987年   17篇
  1986年   11篇
  1985年   12篇
  1984年   11篇
  1983年   10篇
  1982年   10篇
  1981年   11篇
  1980年   4篇
  1979年   10篇
  1978年   8篇
  1977年   4篇
  1976年   6篇
  1975年   6篇
  1974年   6篇
排序方式: 共有2874条查询结果,搜索用时 15 毫秒
61.
62.
Silicatein genes are known to be involved in siliceous spicule formation in marine sponges. Proteins encoded by these genes, silicateins, were recently proposed for nanobiotechnological applications. We studied silicatein genes of marine sponges Latrunculia oparinae collected in the west Pacific region, shelf of Kuril Islands. Five silicatein genes, LoSilA1, LoSilA1a, LoSilA2, and LoSilA3 (silicatein-α group), LoSilB (silicatein-β group), and one cathepsin gene, LoCath, were isolated from the sponge L. oparinae for the first time. The deduced amino acid sequence of L. oparinae silicateins showed high-sequence identity with silicateins described previously. LoCath contains the catalytic triad of amino acid residues Cys-His-Asn characteristic for cathepsins as well as motifs typical for silicateins. A phylogenetic analysis places LoCath between sponge silicateins-β and L-cathepsins suggesting that the LoCath gene represents an intermediate form between silicatein and cathepsin genes. Additionally, we identified, for the first time, silicatein genes (AcSilA and AcSilB) in nonspicule-forming marine sponge, Acаnthodendrilla sp. The results suggest that silicateins could participate also in the function(s) unrelated to spiculogenesis.  相似文献   
63.
The small subunit of ribulose-bisphosphate carboxylase (Rubisco), encoded by rbcS, is essential for photosynthesis in both C3 and C4 plants, even though the cell specificity of rbcS expression is different between C3 and C4 plants. The C3 rbcS is specifically expressed in mesophyll cells, while the C4 rbcS is expressed in bundle sheath cells, and not mesophyll cells. Two chimeric genes were constructed consisting of the structural gene encoding -glucuronidase (GUS) controlled by the two promoters from maize (C4) and rice (C3) rbcS genes. These constructs were introduced into a C4 plant, maize. Both chimeric genes were specifically expressed in photosynthetic organs, such as leaf blade, but not in non-photosynthetic organs. The expressions of the genes were also regulated by light. However, the rice promoter drove the GUS activity mainly in mesophyll cells and relatively low in bundle sheath cells, while the maize rbcS promoter induced the activity specifically in bundle sheath cells. These results suggest that the rice promoter contains some cis-acting elements responding in an organ-pecific and light-inducible regulation manner in maize but does not contain element(s) for bundle sheath cell-specific expression, while the maize promoter does contain such element(s). Based on this result, we discuss the similarities and differences between the rice (C3) and maize (C4) rbcS promoter in terms of the evolution of the C4 photosynthetic gene.  相似文献   
64.
65.
The objective of this study was to ligate the xylanase gene A (xynA) isolated from Ruminococcus albus 7 into the promoter and signal-peptide region of the lichenase [β-(1,3-1,4)-glucanase] gene of Streptococcus bovis JB1. This fusion gene was inserted into the pSBE11 vector, and the resulting recombinant, plasmid pXA, was used to transform S. bovis 12-U-1 cells. The transformant, S. bovis 12UXA, secreted the xylanase, which was stable against freeze-thaw treatment and long-time incubation at 37°C. The introduction of pXA and production of xylanase did not affect cell growth, and the xylanase produced degraded xylan from oat-spelt and birchwood. Received: 24 June 2002 / Accepted: 7 October 2002  相似文献   
66.
Sarcotoxin IA is an antibacterial peptide that is secreted by a meat-fly Sarcophaga peregrina larva in response to a hypodermic injury or bacterial infection. This peptide is highly toxic against a broad spectrum of both Gram-positive and Gram-negative bacteria and lethal to microbes even at nanomolar concentrations. However, research needs as well as its potential use in medicine require substantial amounts of highly purified sarcotoxin. Because heterologous expression systems proved to be inefficient due to sarcotoxin sensitivity to intracellular proteases, here we propose the biosynthesis of sarcotoxin precursors in Escherichia coli cells that are highly sensitive to the mature peptide. To optimize its biosynthesis, sarcotoxin was translationally fused with proteins highly expressed in E. coli. A fusion partner and the position of sarcotoxin in the chimeric polypeptide were crucial for protecting the sarcotoxin portion of the fusion protein from proteolysis. Released after chemical cleavage of the fusion protein and purified to homogeneity, sarcotoxin displayed antibacterial activity comparable to that previously reported for the natural peptide.  相似文献   
67.
p‐Coumaroyl ester 3‐hydroxylase (C3′H) is a key enzyme involved in the biosynthesis of lignin, a phenylpropanoid polymer that is the major constituent of secondary cell walls in vascular plants. Although the crucial role of C3′H in lignification and its manipulation to upgrade lignocellulose have been investigated in eudicots, limited information is available in monocotyledonous grass species, despite their potential as biomass feedstocks. Here we address the pronounced impacts of C3H deficiency on the structure and properties of grass cell walls. C3H‐knockdown lines generated via RNA interference (RNAi)‐mediated gene silencing, with about 0.5% of the residual expression levels, reached maturity and set seeds. In contrast, C3H‐knockout rice mutants generated via CRISPR/Cas9‐mediated mutagenesis were severely dwarfed and sterile. Cell wall analysis of the mature C3H‐knockdown RNAi lines revealed that their lignins were largely enriched in p‐hydroxyphenyl (H) units while being substantially reduced in the normally dominant guaiacyl (G) and syringyl (S) units. Interestingly, however, the enrichment of H units was limited to within the non‐acylated lignin units, with grass‐specific γ‐p‐coumaroylated lignin units remaining apparently unchanged. Suppression of C3H also resulted in relative augmentation in tricin residues in lignin as well as a substantial reduction in wall cross‐linking ferulates. Collectively, our data demonstrate that C3H expression is an important determinant not only of lignin content and composition but also of the degree of cell wall cross‐linking. We also demonstrated that C3H‐suppressed rice displays enhanced biomass saccharification.  相似文献   
68.
Apo E5(Glu3----Lys) is a naturally occurring apolipoprotein E (apo E) mutant found in patients with hyperlipoproteinemia and atherosclerosis. It has been shown to have a high affinity for low density lipoprotein (LDL) receptors. In this study, mutant apo E5 was produced by Chinese hamster ovary cells by means of an in vitro site-directed mutagenesis technique, and its LDL receptor binding activity was assessed. The apo E5 obtained from gene expression bound more readily to the LDL receptor than did plasma apo E3. The concentrations required for 50% competitive binding of 125I-labeled LDL to the LDL receptors were 58.9 ng/ml for plasma apo E3 and 25.7 ng/ml for the expressed apo E5. The expressed apo E5 displayed 229% normal binding. This result is highly consistent with that obtained with plasma apo E5, which showed 217% normal binding. Although the experimental apo E isoproteins contained more sialic acid than plasma apo E, the extent of sialylation had no effect on the receptor binding of apo E.  相似文献   
69.
70.
A recently developed method for surface modification, layer-by-layer (LbL) assembly, has been applied to silicone, and its ability to encourage endothelial cell growth and control cell growth patterns has been examined. The surfaces studied consisted of a precursor, with alternating cationic polyethyleneimine (PEI) and anionic sodium polystyrene sulfonate (PSS) layers followed by alternating gelatin and poly-d-lysine (PDL) layers. Film growth increased linearly with the number of layers. Each PSS/PEI bilayer was 3 nm thick, and each gelatin/PDL bilayer was 5 nm thick. All layers were more hydrophilic than the unmodified silicone rubber surface, as determined from contact angle measurements. The contact angle was primarily dictated by the outermost layer. Of the coatings studied, gelatin was the most hydrophilic. A film of (PSS/PEI)4/(gelatin/PDL)4/ gelatin was highly favorable for cell adhesion and growth, in contrast to films of (PSS/PEI)8 or (PSS/PEI)8/PSS. Cell growth patterns were successfully controlled by selective deposition of microspheres on silicone rubber, using microcontact printing with a silicone stamp. Cell adhesion was confined to the region of microsphere deposition. These results demonstrate that the LbL self-assembly technique provides a general approach to coat and selectively deposit films with nanometer thickness on silicone rubber. Furthermore, they show that this method is a viable technique for controlling cellular adhesion and growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号