首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14124篇
  免费   1058篇
  国内免费   361篇
  2024年   22篇
  2023年   97篇
  2022年   304篇
  2021年   421篇
  2020年   314篇
  2019年   388篇
  2018年   441篇
  2017年   355篇
  2016年   489篇
  2015年   774篇
  2014年   883篇
  2013年   1004篇
  2012年   1236篇
  2011年   1181篇
  2010年   737篇
  2009年   624篇
  2008年   847篇
  2007年   780篇
  2006年   659篇
  2005年   606篇
  2004年   613篇
  2003年   503篇
  2002年   415篇
  2001年   270篇
  2000年   225篇
  1999年   225篇
  1998年   114篇
  1997年   78篇
  1996年   72篇
  1995年   72篇
  1994年   71篇
  1993年   59篇
  1992年   91篇
  1991年   86篇
  1990年   58篇
  1989年   53篇
  1988年   35篇
  1987年   28篇
  1986年   31篇
  1985年   28篇
  1984年   17篇
  1983年   19篇
  1982年   15篇
  1981年   19篇
  1980年   22篇
  1979年   21篇
  1977年   21篇
  1976年   14篇
  1975年   16篇
  1974年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Accumulating evidence suggests that endoplasmic reticulum (ER) stress plays a major role in the development of many diseases. A previous study indicated that the apoptotic regulator p53 is significantly increased in response to ER stress and participates in ER stress-induced apoptosis. However, the regulators of p53 expression during ER stress are still not fully understood. Here, we investigated whether p53 contributes to the impairment of Pin1 signaling under ER stress. We found that treatment with thapsigargin, a stimulator of p53 expression and an inducer of ER stress, decreased Pin1 expression in HCT116 cells. Also, we identified functional p53 response elements (p53REs) in the Pin1 promoter. Overexpression of p53 significantly decreased Pin1 expression in HCT116 cells while abolition of p53 gene expression induced Pin1 expression. Pin1 expression was significantly increased by treatment with the p53 inhibitor pifithrin-α or down-regulation of p53 expression. Taken together, ER stress decreased Pin1 expression through p53 activation, and this mechanism may be associated with ER stress-induced cell death. These data reported here support the importance of Pin1 as a potential target molecule mediating tumor development.  相似文献   
992.
Chronic hepatitis is a major cause of liver cancer, so earlier treatment of hepatitis might be reducing liver cancer incidence. Hepatitis can be induced in mice by treatment with Concanavalin A (Con A); the resulting liver injury causes significant CD4+ T cell activation and infiltration. In these T cells, Roquin, a ring-type E3 ubiquitin ligase, is activated. To investigate the role of Roquin, we examined Con A-induced liver injury and T cell infiltration in transgenic (Tg) mice overexpressing Roquin specifically in T cells. In Roquin Tg mice, Con A treatment caused greater increases in both the levels of liver injury enzymes and liver tissue apoptosis, as revealed by TUNEL and H&E staining, than wild type (WT) mice. Further, Roquin Tg mice respond to Con A treatment with greater increases in the T cell population, particularly Th17 cells, though Treg cell counts are lower. Roquin overexpression also enhances increases in pro-inflammatory cytokines, including IFN-γ, TNF-α and IL-6, upon liver injury. Furthermore, Roquin regulates the immune response and apoptosis in Con A induced hepatitis via STATs, Bax and Bcl2. These findings suggest that over-expression of Roquin exacerbates T-cell mediated hepatitis.  相似文献   
993.
Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with Kd 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.  相似文献   
994.
Secretory clusterin (sCLU)/apolipoprotein J is a multifunctional glycoprotein that is ubiquitously expressed in various tissues. Reduced sCLU in the joints of patients with bone erosive disease is associated with disease activity; however, its exact role has yet to be elucidated. Here, we report that CLU is expressed and secreted during osteoclastogenesis in mouse bone marrow-derived macrophages (BMMs) that are treated with receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). CLU-deficient BMMs obtained from CLU−/− mice exhibited no significant alterations in OC differentiation in comparison with BMMs obtained from wild-type mice. In contrast, exogenous sCLU treatment significantly inhibited OC formation in both BMMs and OC precursor cultures. The inhibitory effect of sCLU was more prominent in BMMs than OC precursor cultures. Interestingly, treating BMMs with sCLU decreased the proliferative effects elicited by M-CSF and suppressed M-CSF-induced ERK activation of OC precursor cells without causing apoptotic cell death. This study provides the first evidence that sCLU reduces OC formation by inhibiting the actions of M-CSF, thereby suggesting its protective role in bone erosion.  相似文献   
995.
Progress in understanding the molecular mechanism of self-assembly of amyloidogenic proteins and peptides requires knowledge about their structure in misfolded states. Structural studies of amyloid aggregates formed during the early aggregation stage are very limited. Atomic force microscopy (AFM) spectroscopy is widely used to analyze misfolded proteins and peptides, but the structural characterization of transiently formed misfolded dimers is limited by the lack of computational approaches that allow direct comparison with AFM experiments. Steered molecular dynamics (SMD) simulation is capable of modeling force spectroscopy experiments, but the modeling requires pulling rates 107 times higher than those used in AFM experiments. In this study, we describe a computational all-atom Monte Carlo pulling (MCP) approach that enables us to model results at pulling rates comparable to those used in AFM pulling experiments. We tested the approach by modeling pulling experimental data for I91 from titin I-band (PDB ID: 1TIT) and ubiquitin (PDB ID: 1UBQ). We then used MCP to analyze AFM spectroscopy experiments that probed the interaction of the peptides [Q6C] Sup35 (6–13) and [H13C] Aβ (13–23). A comparison of experimental results with the computational data for the Sup35 dimer with out-of-register and in-register arrangements of β-sheets suggests that Sup35 monomers adopt an out-of-register arrangement in the dimer. A similar analysis performed for Aβ peptide demonstrates that the out-of-register antiparallel β-sheet arrangement of monomers also occurs in this peptide. Although the rupture of hydrogen bonds is the major contributor to dimer dissociation, the aromatic-aromatic interaction also contributes to the dimer rupture process.  相似文献   
996.
997.
998.
Newcastle disease virus (NDV) is not only one of the most economically important pathogen of poultry but also has a potential as anticancer virotherapy. The role of NDV V protein in virus-production kinetics was investigated using DF-1 cell-based production system. The presence of an anti-interferon (IFN)-alpha antibody resulted in enhanced NDV production kinetics in a dose-dependent manner by blocking binding of NDV-induced IFN to its receptor. To prepare DF-1 cell whose cellular IFN signaling is blocked efficiently, stable cell lines expressing either lentogenic or velogenic NDV V protein known as an IFN antagonist were established. The overexpression of NDV V protein enhanced NDV production kinetics and expedited the rate of NDV production, while it had no effect on Japanese encephalitis virus production. NDV V protein functions as an IFN antagonist by inhibiting the increase in type I IFNs by NDV infection. The IFN signals in cells expressing NDV V protein were weakened by decreased activation or expression of the dsRNA-activated enzymes. These IFN antagonist activities enhance rapid virus replication and spread in the early phase of viral infection and will be useful in improving the production of viral vaccine strains.  相似文献   
999.
Translation initiation plays an important role in cell growth, proliferation, and survival. The translation initiation factor eIF4B (eukaryotic initiation factor 4B) stimulates the RNA helicase activity of eIF4A in unwinding secondary structures in the 5′ untranslated region (5′UTR) of the mRNA in vitro. Here, we studied the effects of eIF4B depletion in cells using RNA interference (RNAi). In agreement with the role of eIF4B in translation initiation, its depletion resulted in inhibition of this step. Selective reduction of translation was observed for mRNAs harboring strong to moderate secondary structures in their 5′UTRs. These mRNAs encode proteins, which function in cell proliferation (Cdc25C, c-myc, and ODC [ornithine decarboxylase]) and survival (Bcl-2 and XIAP [X-linked inhibitor of apoptosis]). Furthermore, eIF4B silencing led to decreased proliferation rates, promoted caspase-dependent apoptosis, and further sensitized cells to camptothecin-induced cell death. These results demonstrate that eIF4B is required for cell proliferation and survival by regulating the translation of proliferative and prosurvival mRNAs.Targeting the translation initiation pathway is emerging as a potential therapy for inhibiting cancer cell growth (35, 38). Ribosome recruitment to the 5′ ends of eukaryotic mRNAs proceeds via translation initiation mechanisms that are dependent either on the 5′ cap structure (m7GpppN, where N is any nucleotide) or an internal ribosome entry site (IRES). The majority of translation initiation events in eukaryotes are mediated through cap-dependent translation whereby the 40S ribosomal subunit is recruited to the vicinity of the mRNA 5′ cap structure by the eukaryotic initiation factor 4F (eIF4F) complex. eIF4F is comprised of eIF4E (the cap-binding subunit), eIF4A (an RNA helicase), and eIF4G (a large scaffolding protein for eIF4E, eIF4A, and other initiation factors). Once assembled at the 5′ cap, the 40S ribosomal subunit in association with several initiation factors scans the 5′ untranslated region (5′UTR) of the mRNA until it encounters a start codon in a favorable context, followed by polypeptide synthesis (37).Early in vitro studies have shown that the initiation factor eIF4B acts to potentiate ribosome recruitment to the mRNA (3, 45). eIF4B stimulates translation of both capped and uncapped mRNAs in vitro (1, 36). This function is exerted through stimulation of the helicase activity of eIF4A (43), possibly through direct interactions with eIF4A (44) or with mRNA, the ribosome-associated eIF3, and 18S rRNA (28, 29, 44). Thus, eIF4B is thought to form auxiliary bridges between the mRNA and the 40S ribosomal subunit. Toeprinting studies using mammalian eIF4B underscored its importance in the assembly of the 48S initiation complex, especially on mRNAs harboring secondary structures in the 5′UTRs (11).In vivo studies of eIF4B are limited. Ectopic expression of eIF4B in cultured Drosophila melanogaster cells and in developing eye imaginal discs stimulated cell proliferation (16). Enhanced cell proliferation is most likely mediated by increased translation of a subset of mRNAs, since knockdown of Drosophila eIF4B by RNA interference (RNAi) caused a modest reduction in global translation but compromised the survival of insect cells grown under low serum conditions (16). Studies of eIF4B in mammalian cells yielded contradictory results. Transient overexpression of eIF4B stimulated translation initiation in a phosphorylation-dependent manner in some cells (18, 49) while inhibiting translation in others (30, 31, 41). These differences might be attributed to disparate levels of eIF4B overexpression.To address the physiological role of eIF4B in mRNA translation in the cell, RNAi knockdown of eIF4B was used here. We demonstrate that eIF4B is required for optimal translation. Importantly, the translation of mRNAs bearing structured 5′UTRs, such as the cell cycle regulators Cdc25C, c-myc, and ODC (ornithine decarboxylase), and the antiapoptotic factors Bcl-2 and XIAP (X-linked inhibitor of apoptosis), was reduced as a result of eIF4B silencing by RNAi. Furthermore, eIF4B silencing promoted caspase-dependent apoptosis. Thus, we show that mammalian eIF4B is required for cell proliferation and survival, whereby it acts by regulating the translation of a functionally related subset of mRNAs.  相似文献   
1000.
Melatonin exerts many physiological functions via its G protein-coupled receptors. In the present study, we investigated age-related changes in MT2 melatonin receptor immunoreactivity and its levels in the gerbil hippocampus during normal aging. In the postnatal month 1 (PM 1) group, MT2 immunoreaction was well observed in neurons in all subregions of the gerbil hippocampus. In the PM 3 and 6 groups, MT2 immunoreactivity in neurons was decreased compared to that in the PM 1 group. Thereafter, MT2 immunoreactivity in neurons was increased. In the PM 18 and 24 groups, MT2 immunoreactivity in neurons was strong in all subregions of the gerbil hippocampus. In addition, the number of MT2 immunoreactive cells was lowest at PM 3 and highest at PM 24. From western blot analysis, age-dependent change pattern in MT2 level in the gerbil hippocampus was similar to the immunohistochemical result. These results indicate that MT2 immunoreactivity and levels are altered in the gerbil hippocampus during normal aging; lowest at young adult stage and highest at aged stage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号