首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1978篇
  免费   156篇
  2024年   3篇
  2023年   7篇
  2022年   22篇
  2021年   36篇
  2020年   25篇
  2019年   37篇
  2018年   39篇
  2017年   38篇
  2016年   66篇
  2015年   97篇
  2014年   96篇
  2013年   149篇
  2012年   158篇
  2011年   162篇
  2010年   95篇
  2009年   83篇
  2008年   120篇
  2007年   132篇
  2006年   125篇
  2005年   117篇
  2004年   105篇
  2003年   109篇
  2002年   100篇
  2001年   15篇
  2000年   14篇
  1999年   19篇
  1998年   19篇
  1997年   14篇
  1996年   17篇
  1995年   10篇
  1994年   12篇
  1993年   18篇
  1992年   10篇
  1991年   11篇
  1990年   3篇
  1989年   5篇
  1987年   4篇
  1986年   4篇
  1985年   3篇
  1984年   5篇
  1983年   3篇
  1982年   2篇
  1981年   8篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1976年   4篇
  1975年   2篇
  1971年   2篇
排序方式: 共有2134条查询结果,搜索用时 31 毫秒
991.
Tsurupa G  Mahid A  Veklich Y  Weisel JW  Medved L 《Biochemistry》2011,50(37):8028-8037
Our previous studies revealed that in fibrinogen the αC-domains are not reactive with their ligands, suggesting that their binding sites are cryptic and become exposed upon its conversion to fibrin, in which these domains form αC polymers. On the basis of this finding, we hypothesized that polymerization of the αC-domains in fibrin results in the exposure of their binding sites and that these domains adopt the physiologically active conformation only in αC-domain polymers. To test this hypothesis, we prepared a recombinant αC region (residues Aα221-610) including the αC-domain (Aα392-610), demonstrated that it forms soluble oligomers in a concentration-dependent and reversible manner, and stabilized such oligomers by covalently cross-linking them with factor XIIIa. Cross-linked Aα221-610 oligomers were stable in solution and appeared as ordered linear, branching filaments when analyzed by electron microscopy. Spectral studies revealed that the αC-domains in such oligomers were folded into compact structures of high thermal stability with a significant amount of β-sheets. These findings indicate that cross-linked Aα221-610 oligomers are highly ordered and mimic the structure of fibrin αC polymers. The oligomers also exhibited functional properties of polymeric fibrin because, in contrast to the monomeric αC-domain, they bound tPA and plasminogen and stimulated activation of the latter by the former. Altogether, the results obtained with cross-linked Aα221-610 oligomers clarify the structure of the αC-domains in fibrin αC polymers and confirm our hypothesis that their binding sites are exposed upon polymerization. Such oligomers represent a stable, soluble model of fibrin αC polymers that can be used for further structure-function studies of fibrin αC-domains.  相似文献   
992.
Sasaki T  Demura M  Kato N  Mukai Y 《Biochemistry》2011,50(12):2283-2290
A light-driven proton pump bacteriorhodopsin (bR) forms a two-dimensional hexagonal lattice with about 10 archaeal lipids per monomer bR on purple membrane (PM) of Halobacterium salinarum. In this study, we found that the weakening of the bR-lipid interaction on PM by addition of alcohol can be detected as the significant increase of protein solubility in a nonionic detergent, dodecyl β-D-maltoside (DDM). The protein solubility in DDM was also increased by bR-lipid interaction change accompanied by structural change of the apoprotein after retinal removal and was about 7 times higher in the case of completely bleached membrane than that of intact PM. Interestingly, the cyclic and milliseconds order of structural change of bR under light irradiation also led to increasing the protein solubility and had a characteristic light intensity dependence with a phase transition. These results indicate that there is a photointermediate in which bR-lipid interaction has been changed by its dynamic structural change. Because partial delipidation of PM by CHAPS gave minor influence for the change of the protein solubility compared to intact PM in both dark and light conditions, it is suggested that specific interactions of bR with some lipids which remain on PM even after delipidation treatment have a key role for the change of solubility in DDM induced by alcohol binding, ligand release, and photon absorption on bR.  相似文献   
993.
Misfolding and aggregation of amyloid β-40 (Aβ-40) peptide play key roles in the development of Alzheimer's disease (AD). However, very little is known about the molecular mechanisms underlying these molecular processes. We developed a novel experimental approach that can directly probe aggregation-prone states of proteins and their interactions. In this approach, the proteins are anchored to the surface of the atomic force microscopy substrate (mica) and the probe, and the interaction between anchored molecules is measured in the approach-retraction cycles. We used dynamic force spectroscopy (DFS) to measure the stability of transiently formed dimers. One of the major findings from DFS analysis of α-synuclein (α-Syn) is that dimeric complexes formed by misfolded α-Syn protein are very stable and dissociate over a range of seconds. This differs markedly from the dynamics of monomers, which occurs on a microsecond to nanosecond time scale. Here we applied the same approach to quantitatively characterize interactions of Aβ-40 peptides over a broad range of pH values. These studies showed that misfolded dimers are characterized by lifetimes in the range of seconds. This value depends on pH and varies between 2.7 s for pH 2.7 and 0.1 s for pH 7, indicating that the aggregation properties of Aβ-40 are modulated by the environmental conditions. The analysis of the contour lengths revealed the existence of various pathways for dimer dissociation, suggesting that dimers with different conformations are formed. These structural variations result in different aggregation pathways, leading to different types of oligomers and higher-order aggregates, including fibrils.  相似文献   
994.
β‐Lactoglobulin (β‐LG) is a lipocalin, which is the major whey protein of cow's milk and the milk of other mammals. However, it is absent from human milk. The biological function of β‐LG is not clear, but its potential role in carrying fatty acids through the digestive tract has been suggested. β‐LG has been found in complexes with lipids such as butyric and oleic acids and has a high affinity for a wide variety of compounds. Serotonin (5‐hydroxytryptamine, 5‐HT), an important compound found in animals and plants, has various functions, including the regulation of mood, appetite, sleep, muscle contraction, and some cognitive functions such as memory and learning. In this study, the interaction of serotonin and one of its derivatives, arachidonyl serotonin (AA‐5HT), with β‐LG was investigated using circular dichroism (CD) and fluorescence intensity measurements. These two ligands interact with β‐LG forming equimolar complexes. The binding constant for the serotonin/β‐LG interaction is between 105 and 106 M−1, whereas for the AA‐5HT/β‐LG complex it is between 104 and 105 M−1 as determined by measurements of either protein or ligand fluorescence. The observed binding affinities were higher in hydroethanolic media (25% EtOH). The interactions between serotonin/β‐LG and AA‐5HT/β‐LG may compete with self‐association (micellization) of both the ligand and the protein. According to far‐ and near‐UV CD results, these ligands have no apparent influence on β‐LG secondary structure, however they partially destabilize its tertiary structure. Their binding by β‐LG may be one of the peripheral mechanisms of the regulation of the content of serotonin and its derivatives in the bowel of milk‐fed animals. © 2011 Wiley Periodicals, Inc. Biopolymers 95: 871–880, 2011.  相似文献   
995.
Use of the Kaposi's sarcoma-associated herpesvirus (KSHV) bacterial artificial chromosome 36 (KSHV-BAC36) genome permits reverse genetics approaches to study KSHV biology. While sequencing the complete KSHV-BAC36 genome, we noted a duplication of a 9-kb fragment of the long unique region in the terminal repeat region. This duplication covers a part of open reading frame (ORF) 19, the complete ORFs 18, 17, 16, K7, K6, and K5, and the putative ORF in the left origin of lytic replication, and it contains the BAC cassette. This observation needs to be kept in mind if viral genes located within the duplicated region are to be mutated in KSHV-BAC36.  相似文献   
996.
Cell movement is an important cellular function not only in physiological but also in pathological conditions. Although numerous studies have been conducted to reveal the mechanism of cell movement, the full picture has yet to be depicted, likely due to the complex features of cell movement. We show here that the scaffold protein afadin dilute domain-interacting protein (ADIP), an afadin-binding protein, is involved in the regulation of cell movement. ADIP localized at the leading edge of moving cells in response to platelet-derived growth factor (PDGF) and was required for the formation of the leading edge and the promotion of cell movement. Impaired cell movement observed in ADIP knockdown cells was not rescued by expression of an ADIP mutant that is incapable of binding to afadin, leading to the notion that the function of ADIP in moving cells depends on its interaction with afadin. Knockdown of ADIP as well as knockdown of afadin inhibited the activation of the small G protein Rac, which is important for the formation of the leading edge and the promotion of cell movement. Furthermore, ADIP interacted with Vav2, a GDP/GTP exchange factor for Rac, in a Src phosphorylation-dependent manner, suggesting that ADIP mediates the activation of Rac through Vav2. These results indicate that ADIP plays an essential role in PDGF-induced cell movement by interacting with afadin and Vav2 and regulating the activation of Rac.  相似文献   
997.
Two newly isolated obligate methanol-utilizing bacteria (strains IvaT and LapT) with the ribulose monophosphate pathway of C1 assimilation are described. The isolates are strictly aerobic, Gram negative, asporogenous, motile rods multiplying by binary fission, mesophilic and neutrophilic, synthesize indole-3-acetate. The prevailing cellular fatty acids are straight-chain saturated C16:0 and unsaturated C16:1 acids. The major ubiquinone is Q-8. The predominant phospholipids are phosphatidylethanolamine, phosphatidylglycerol and cardiolipin. Ammonia is assimilated by glutamate dehydrogenase. The DNA G+C contents of strains IvaT and LapT are 54.0 and 50.5 mol% (Tm), respectively.Based on 16S rRNA gene sequence analysis and DNA–DNA relatedness (38–45%) with type strains of the genus Methylobacillus, the novel isolates are classified as the new species of this genus and named Methylobacillus arboreus IvaT (VKM B-2590T, CCUG 59684T, DSM 23628T) and Methylobacillus gramineus LapT (VKM B-2591T, CCUG 59687T, DSM 23629T).The GenBank accession numbers for the 16S rRNA gene and mxaF gene sequences of the strains IvaT and LapT are GU937479, GU937478 and HM030736, HM030735, respectively.  相似文献   
998.
This work identifies the combination of enzymatic transfer and click labeling as an efficient method for the site-specific tagging of RNA molecules for biophysical studies. A double-activated analog of the ubiquitous co-substrate S-adenosyl-l-methionine was employed to enzymatically transfer a five carbon chain containing a terminal alkynyl moiety onto RNA. The tRNA:methyltransferase Trm1 transferred the extended alkynyl moiety to its natural target, the N2 of guanosine 26 in tRNA(Phe). LC/MS and LC/MS/MS techniques were used to detect and characterize the modified nucleoside as well as its cycloaddition product with a fluorescent azide. The latter resulted from a labeling reaction via Cu(I)-catalyzed azide-alkyne 1,3-cycloaddition click chemistry, producing site-specifically labeled RNA whose suitability for single molecule fluorescence experiments was verified in fluorescence correlation spectroscopy experiments.  相似文献   
999.
The efficacy of cardiac repair by stem cell administration relies on a successful functional integration of injected cells into the host myocardium. Safety concerns have been raised about the possibility that stem cells may induce foci of arrhythmia in the ischemic myocardium. In a previous work (36), we showed that human cord blood CD34(+) cells, when cocultured on neonatal mouse cardiomyocytes, exhibit excitation-contraction coupling features similar to those of cardiomyocytes, even though no human genes were upregulated. The aims of the present work are to investigate whether human CD34(+) cells, isolated after 1 wk of coculture with neonatal ventricular myocytes, possess molecular and functional properties of cardiomyocytes and to discriminate, using a reporter gene system, whether cardiac differentiation derives from a (trans)differentiation or a cell fusion process. Umbilical cord blood CD34(+) cells were isolated by a magnetic cell sorting method, transduced with a lentiviral vector carrying the enhanced green fluorescent protein (EGFP) gene, and seeded onto primary cultures of spontaneously beating rat neonatal cardiomyocytes. Cocultured EGFP(+)/CD34(+)-derived cells were analyzed for their electrophysiological features at different time points. After 1 wk in coculture, EGFP(+) cells, in contact with cardiomyocytes, were spontaneously contracting and had a maximum diastolic potential (MDP) of -53.1 mV, while those that remained isolated from the surrounding myocytes did not contract and had a depolarized resting potential of -11.4 mV. Cells were then resuspended and cultured at low density to identify EGFP(+) progenitor cell derivatives. Under these conditions, we observed single EGFP(+) beating cells that had acquired an hyperpolarization-activated current typical of neonatal cardiomyocytes (EGFP(+) cells, -2.24 ± 0.89 pA/pF; myocytes, -1.99 ± 0.63 pA/pF, at -125 mV). To discriminate between cell autonomous differentiation and fusion, EGFP(+)/CD34(+) cells were cocultured with cardiac myocytes infected with a red fluorescence protein-lentiviral vector; under these conditions we found that 100% of EGFP(+) cells were also red fluorescent protein positive, suggesting cell fusion as the mechanism by which cardiac functional features are acquired.  相似文献   
1000.
Ionic liquid (IL) and ammonia fiber expansion (AFEX) pretreatments were studied to develop the first direct side-by-side comparative assessment on their respective impacts on biomass structure, composition, process mass balance, and enzymatic saccharification efficiency. AFEX pretreatment completely preserves plant carbohydrates, whereas IL pretreatment extracts 76% of hemicellulose. In contrast to AFEX, the native crystal structure of the recovered corn stover from IL pretreatment was significantly disrupted. For both techniques, more than 70% of the theoretical sugar yield was attained after 48 h of hydrolysis using commercial enzyme cocktails. IL pretreatment requires less enzyme loading and a shorter hydrolysis time to reach 90% yields. Hemicellulase addition led to significant improvements in the yields of glucose and xylose for AFEX pretreated corn stover, but not for IL pretreated stover. These results provide new insights into the mechanisms of IL and AFEX pretreatment, as well as the advantages and disadvantages of each.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号